skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of amino acid additives on protein solubility – insights from desorption and direct electrospray ionization mass spectrometry
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of l -serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system ( p -value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points ( p -value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with d -serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.  more » « less
Award ID(s):
2003379
PAR ID:
10348077
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Analyst
Volume:
146
Issue:
21
ISSN:
0003-2654
Page Range / eLocation ID:
6592 to 6604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RationalePurification of recombinant proteins is a necessary step for functional or structural studies and other applications. Immobilized metal affinity chromatography is a common recombinant protein purification method. Mass spectrometry (MS) allows for confirmation of identity of expressed proteins and unambiguous detection of enzymatic substrates and reaction products. We demonstrate the detection of enzymes purified on immobilized metal affinity surfaces by direct or ambient ionization MS, and follow their enzymatic reactions by direct electrospray ionization (ESI) or desorption electrospray ionization (DESI). MethodsA protein standard, His‐Ubq, and two recombinant proteins, His‐SHAN and His‐CS, expressed inEscherichia coliwere immobilized on two immobilized metal affinity systems, Cu–nitriloacetic acid (Cu‐NTA) and Ni‐NTA. The proteins were purified on surface, and released in the ESI spray solvent for direct infusion, when using the 96‐well plate form factor, or analyzed directly from immobilized metal affinity‐coated microscope slides by DESI‐MS. Enzyme activity was followed by incubating the substrates in wells or by depositing substrate on immobilized protein on coated slides for analysis. ResultsSmall proteins (His‐Ubq) and medium proteins (His‐SAHN) could readily be detected from 96‐well plates by direct infusion ESI, or from microscope slides by DESI‐MS after purification on surface from clarifiedE. colicell lysate. Protein oxidation was observed for immobilized proteins on both Cu‐NTA and Ni‐NTA; however, this did not hamper the enzymatic reactions of these proteins. Both the nucleosidase reaction products for His‐SAHN and the methylation product of His‐CS (theobromine to caffeine) were detected. ConclusionsThe immobilization, purification, release and detection of His‐tagged recombinant proteins using immobilized metal affinity surfaces for direct infusion ESI‐MS or ambient DESI‐MS analyses were successfully demonstrated. Recombinant proteins were purified to allow identification directly out of clarified cell lysate. Biological activities of the recombinant proteins were preserved allowing the investigation of enzymatic activity via MS. 
    more » « less
  2. Abstract This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization‐mass spectrometry (DESI‐MS). Related ambient ionization techniques are discussed in comparison to DESI‐MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano‐DESI currently exceed those of DESI‐MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI‐MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI‐MS is justified. 
    more » « less
  3. Introduction Previous work has shown that exposure of electrospray droplets to ethyl acetate produce spectra with more intense protein signal, as well as protein envelopes shifted toward higher charge states . This is of specific interest when carrying out DESI-MS analysis, as the technique struggles to analyze proteins larger than 25 kDa in size due to poor dissolution and adduction. . The mechanism by which ethyl acetate improves responses was studied by analyzing protein molecules in atmospheres modified with ethyl acetate and related polar organic compounds, and an analogue series of esters with increasing chain lengths. Methods All spectra were collected using a Thermo LTQ XL mass spectrometer. ESI samples were 2.5 μM cytochrome C, myoglobin or lysozyme in 80% methanol with 0.1% formic acid or in aqueous 100mM ammonium acetate. A polypropylene enclosure for introduction of additive to the atmospheric region around the ion source and transfer tube was constructed . Liquid additives were introduced at a controlled, continuous, flow rate of 70 μL/min onto a flash chromatography pad acting as a reservoir inside of the enclosure. The additive was allowed to evaporate from the reservoir pad to saturate the ionization region. Relative changes in signals upon vapor additions were reported as the ratio to enclosed signal without vapor modification. Preliminary Data Our results indicate dependence on the alkyl chain length on either side of the ester functional group. By increasing the alkyl chain length of alcohol and carboxylic acid precursors, the hydrophobicity of esters also increases. Longer alkyl chains proton affinities of these molecules. Proteins were analyzed from denaturing conditions and ionization is believed to occur through the chain ejection model (CEM). We suggest that the increasing hydrophobicity of the esters may increasingly aid in lowering the energy barrier of transfer of the denatured protein from the solvated state in bulk droplet to the gas phase. This might be a consequence of the formation of a condensed ester on the evaporative cooled microdroplet, or a gas phase interaction. The degree of improvement when modifying the ionization region with esters initially shows little to no increase when using those with smaller alkyl chains (C3, C4). With longer chains (C7), however, dramatic improvements in protein signal can be observed. This is particularly evident when analyzing higher charge state peaks corresponding to more unfolded protein populations, such peaks corresponding to more unfolded protein populations. This effect may be due to competition between vapor pressure of the atmospheric modifiers and hydrophobic interactions between the modifier and ejecting protein. Vapor pressure drastically decreases between ethyl acetate to longer chain esters such as butyl acetate. Additional heating of the pad will be investigated to compensate for this trade-off. . With even longer chain esters, such as ethyl heptanoate, we see a greater improvement, indicating that their increased hydrophobic character and resultant analyte interactions is more favorable. As well, the improved signal observed for higher charge state peaks consequently increases the protein average charge state. Novel Aspect Vapor addition of esters with increasing chain lengths to the atmospheric ionization region improve protein detection by electrospray-based methods 
    more » « less
  4. Electrospray ionization (ESI) is one of the most popular methods to generate ions for mass spectrometry (MS). When compared with other ionization techniques, it can generate ions from liquid-phase samples without additives, retaining covalent and non-covalent interactions of the molecules of interest. When hyphenated to liquid chromatography, it greatly expands the versatility of MS analysis of complex mixtures. However, despite the extensive growth in the application of ESI, the technique still suffers from some drawbacks when powered by direct current (DC) power supplies. Triboelectric nanogenerators promise to be a new power source for the generation of ions by ESI, improving on the analytical capabilities of traditional DC ESI. In this review we highlight the fundamentals of ESI driven by DC power supplies, its contrasting qualities to triboelectric nanogenerator power supplies, and its applications to three distinct fields of research: forensics, metabolomics, and protein structure analysis. 
    more » « less
  5. RationaleThe developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. MethodsTheinletandvacuumionization methods of solvent‐assisted ionization (SAI), matrix‐assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. ResultsResults are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization. We demonstrate the utility of multi‐ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub‐atmospheric pressure (vacuumMAI). Simplicity and use of a wide array of matrices are attained using a conduit (inletionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on‐probe reactions are analyzed directly and, especially in the case ofvacuumionization, without concern of carryover or instrument contamination. ConclusionsExamples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications. 
    more » « less