skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators
Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without penetration of quantized magnetic vortices through the cavity wall. Therefore, the magnetic field at which vortices penetrate a superconductor is one of the key parameters of merit of SRF cavities. Techniques to measure the onset of magnetic field penetration on thin film samples need to be developed to mitigate the issues with the conventional magnetometry measurements that are strongly influenced by the film orientation and shape and edge effects. In this work, we report the development of an experimental setup to measure the field of full flux penetration through films and multi-layered superconductors. Our system combines a small superconducting solenoid that can generate a magnetic field of up to 500 mT at the sample surface and three Hall probes to detect the full flux penetration through the superconductor. This setup can be used to study alternative materials that could potentially outperform niobium, as well as superconductor–insulator–superconductor (SIS) multilayer coatings on niobium.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The SIS structure which consists of alternative thin lay- ers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer supercon- ductors in an external magnetic field is essential to opti- mize their SRF performance. In this work we report the de- velopment of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and mul- tilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a par- allel surface magnetic field up to 0.5 T and Hall probes to detect penetrated magnetic field across the superconduct- ing sample. This system was calibrated and used to study the effect of niobium sample thickness on the field of full magnetic flux penetration. We determined the optimum thickness of the niobium substrate to fabricate the multi- layer structure for the measurements in our setup. This technique was used to measure penetration fields of Nb 3 Sn thin films and Nb 3 Sn/Al 2 O 3 multilayers deposited on Al 2 O 3 wafers. The system was optimized to mitigate thermo- magnetic flux jumps at low temperatures. 
    more » « less
  2. The magnetic field at which first flux penetrates is a fundamental parameter characterizing superconducting materials for SRF cavities. Therefore, an accurate technique is needed to measure the penetration of the magnetic field directly. The conventional magnetometers are inconvenient for thin superconducting film measurements because these measurements are strongly influenced by orientation, edge and shape effects. In order to measure the onset of field penetration in bulk, thin films and multi-layered superconductors, we have designed, built and calibrated a system combining a small superconducting solenoid capable of generating surface magnetic field higher than 500 mT and Hall probe to detect the first entry of vortices. This setup can be used to study various promising alternative materials to Nb, especially SIS multilayer coatings on Nb that have been recently proposed to delay the vortex penetration in Nb surface. In this paper, the system will be described, and calibration will be presented. 
    more » « less
  3. Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010–1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two high-resolution diagnostic tools to measure the distribution of trapped flux at the surface of SRF cavities. One is a magnetic field scanning system, which uses cryogenic Hall probes and anisotropic magnetoresistance sensors that fit the contour of a 1.3 GHz cavity. This setup has a spatial resolution of ∼13μm in the azimuthal direction and ∼1 cm along the cavity contour. The second setup is a stationary, combined magnetic and temperature mapping system, which uses anisotropic magnetoresistance sensors and carbon resistor temperature sensors, covering the surface of a 3 GHz SRF cavity. This system has a spatial resolution of 5 mm close to the iris and 11 mm at the equator. Initial results show a non-uniform distribution of trapped flux on the cavities’ surfaces, dependent on the magnitude of the applied magnetic field during field-cooling below the critical temperature.

    more » « less
  4. Abstract

    Elemental type-II superconducting niobium is the material of choice for superconducting radiofrequency cavities used in modern particle accelerators, light sources, detectors, sensors, and quantum computing architecture. An essential challenge to increasing energy efficiency in rf applications is the power dissipation due to residual magnetic field that is trapped during the cool down process due to incomplete magnetic field expulsion. New SRF cavity processing recipes that use surface doping techniques have significantly increased their cryogenic efficiency. However, the performance of SRF Nb accelerators still shows vulnerability to a trapped magnetic field. In this manuscript, we report the observation of a direct link between flux trapping and incomplete flux expulsion with spatial variations in microstructure within the niobium. Fine-grain recrystallized microstructure with an average grain size of 10–50 µm leads to flux trapping even with a lack of dislocation structures in grain interiors. Larger grain sizes beyond 100–400 µm do not lead to preferential flux trapping, as observed directly by magneto-optical imaging. While local magnetic flux variations imaged by magneto-optics provide clarity on a microstructure level, bulk variations are also indicated by variations in pinning force curves with sequential heat treatment studies. The key results indicate that complete control of the niobium microstructure will help produce higher performance superconducting resonators with reduced rf losses1related to the magnetic flux trapping.

    more » « less
  5. Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 square microns. The device is fabricated from a single 35-nm thick YBa2Cu3O7d film. A flux concentrating pick-up loop is directly coupled to a 10 nm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 microPhi0. The field noise of the magnetometer is 4 pT/Hz1=2 at 4.2 K. 
    more » « less