skip to main content


Title: Analysis of reduced and oxidized nitrogen-containing organic compounds at a coastal site in summer and winter
Abstract. Nitrogen-containing organic compounds, which may be directly emitted into the atmosphere or which may form via reactions with prevalent reactive nitrogen species (e.g., NH3, NOx, NO3), have important but uncertaineffects on climate and human health. Using gas and liquid chromatographywith soft ionization and high-resolution mass spectrometry, we performed amolecular-level speciation of functionalized organic compounds at a coastal site on the Long Island Sound in summer (during the 2018 Long Island Sound Tropospheric Ozone Study – LISTOS – campaign) and winter. This region often experiences poor air quality due to theemissions of reactive anthropogenic, biogenic, and marine-derived compoundsand their chemical transformation products. We observed a range offunctionalized compounds containing oxygen, nitrogen, and/or sulfur atomsresulting from these direct emissions and chemical transformations,including photochemical and aqueous-phase processing that was more pronounced in summer and winter, respectively. In both summer and winter, nitrogen-containing organic aerosols dominated the observed distribution offunctionalized particle-phase species ionized by our analytical techniques,with 85 % and 68 % of total measured ion abundance containing a nitrogenatom, respectively. Nitrogen-containing particles included reduced nitrogen functional groups (e.g., amines, imines, azoles) and common NOz contributors (e.g., organonitrates). Reduced nitrogen functional groups observed in the particle phase were frequently paired with oxygen-containing groups elsewhere on the molecule, and their prevalence often rivaled that of oxidized nitrogen groups detected by our methods. Supplemental gas-phasemeasurements, collected on adsorptive samplers and analyzed with a novelliquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds are possible contributing precursors to the observed nitrogen-containing particles. Altogether, this work highlights theprevalence of reduced nitrogen-containing compounds in the less-studied northeastern US and potentially in other regions with similar anthropogenic, biogenic, and marine source signatures.  more » « less
Award ID(s):
1764126
NSF-PAR ID:
10348418
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
5
ISSN:
1680-7324
Page Range / eLocation ID:
3045 to 3065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Forest fires are major contributors of reactive gas- and particle-phaseorganic compounds to the atmosphere. We used offline high-resolution tandemmass spectrometry to perform a molecular-level speciation of gas- andparticle-phase compounds sampled via aircraft from an evolving boreal forestfire smoke plume in Saskatchewan, Canada. We observed diversemultifunctional compounds containing oxygen, nitrogen, and sulfur (CHONS),whose structures, formation, and impacts are understudied. Thedilution-corrected absolute ion abundance of particle-phase CHONS compoundsincreased with plume age by a factor of 6.4 over the first 4 h ofdownwind transport, and their relative contribution to the observedfunctionalized organic aerosol (OA) mixture increased from 19 % to 40 %.The dilution-corrected absolute ion abundance of particle-phase compoundswith sulfide functional groups increased by a factor of 13 with plume age,and their relative contribution to observed OA increased from 4 % to40 %. Sulfides were present in up to 75 % of CHONS compounds and theincreases in sulfides were accompanied by increases in ring-bound nitrogen;both increased together with CHONS prevalence. A complex mixture ofintermediate- and semi-volatile gas-phase organic sulfur species wasobserved in emissions from the fire and depleted downwind, representingpotential precursors to particle-phase CHONS compounds. These resultsdemonstrate CHONS formation from nitrogen- and oxygen-containing biomass burningemissions in the presence of reduced sulfur species. In addition, theyhighlight chemical pathways that may also be relevant in situations withelevated emissions of nitrogen- and sulfur-containing organic compounds fromresidential biomass burning and fossil fuel use (e.g., coal), respectively. 
    more » « less
  2. Abstract. Cooking is an important but understudied source of urban anthropogenic fine particulate matter (PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across sampled restaurants and particle number concentrations (PNCs, a proxy for UFPs) that were substantially elevated relative to the urban background. In our observations, PM mass emitted from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while emissions from most restaurants were similar, there were key mass spectral differences. All restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated to reduced ions at specific m/z) varied across locations. All restaurant emissions included reduced-nitrogen species detected as CxHyN+ fragments, making up ∼15 % of OA mass measured in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often accompanied by oxygen-containing functional groups. The largest reduced-nitrogen emissions were observed from a commercial bread bakery (i.e., 30 %–50 % of OA mass), highlighting the marked differences between restaurants and their importance for emissions of both urban UFPs and reduced nitrogen.

     
    more » « less
  3. The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition. 
    more » « less
  4. null (Ed.)
    Reactions in aqueous solutions containing dicarbonyls (especially the α-dicarbonyls methylglyoxal, glyoxal, and biacetyl) and reduced nitrogen (NHx) have been studied extensively. It has been proposed that accretion reactions from dicarbonyls and NHx could be a source of particulate matter and brown carbon in the atmosphere and therefore have direct implications for human health and climate. Other dicarbonyls, such as the 1,4-unsaturated dialdehyde butenedial, are also produced from the atmospheric oxidation of volatile organic compounds, especially aromatics and furans, but their aqueous-phase reactions with NHx have not been characterized. In this work, we determine a pH-dependent mechanism of butenedial reactions in aqueous solutions with NHx that is compared to α-dicarbonyls, in particular the dialdehyde glyoxal. Similar to glyoxal, butenedial is strongly hydrated in aqueous solutions. Butenedial reaction with NHx also produces nitrogen-containing rings and leads to accretion reactions that form brown carbon. Despite glyoxal and butenedial both being dialdehydes, butenedial is observed to have three significant differences in its chemical behavior: (1) as previously shown, butenedial does not substantially form acetal oligomers, (2) the butenedial/OH− reaction leads to light-absorbing compounds, and (3) the butenedial/NHx reaction is fast and first order in the dialdehyde. Building off of a complementary study on butenedial gas-particle partitioning, we suggest that the behavior of other reactive dialdehydes and dicarbonyls may not always be adequately predicted by α-dicarbonyls, even though their dominant functionalities are closely related. The carbon skeleton (e.g., its hydrophobicity, length, and bond structure) also governs the fate and climate-relevant properties of dicarbonyls in the atmosphere. If other dicarbonyls behave like butenedial, their reaction with NHx could constitute a regional source of brown carbon to the atmosphere. 
    more » « less
  5. Isoprene is one of the most common biogenic volatile organic compounds (BVOC) in the atmosphere, produced by many plants. Isoprene undergoes oxidation to form gaseous isoprene epoxydiols (IEPOX) under low-NOx conditions, which can lead to the formation of secondary organic aerosol (SOA) particles. SOA-containing particles affect climate by scattering and absorbing solar radiation or acting as cloud condensation nuclei (CCN). High concentrations of SOA are also associated with adverse health impacts in people. While in the atmosphere, IEPOX SOA particles continue to undergo reactions with atmospheric oxidants, including hydroxyl radical (OH). To isolate and probe this process, we studied atmospheric chemical processes in an aerosol chamber to better understand the evolution of heterogeneous OH oxidation of IEPOX-derived SOA particles. Since very little is understood about the structural and spectroscopic properties because of the complexity of their many sources and atmospheric processing, individual particle measurements are necessary to provide better understanding of the composition of IEPOX SOA. We injected particles composed of mixtures of ammonium sulfate and sulfuric acid across a range of acidities(PH = 0.5 – 2.5) and gas-phase IEPOX into the chamber to generate SOA. The SOA particles were then sent to an oxidation flow reactor, and exposed to different OH concentrations representative of aging of a number of days. We kept relative humidity (RH) constant at ~65%, the temperature was ~23 °C, and levels of oxidation were controlled by adjusting lamp intensity. After oxidized SOA was impacted on quartz substrates, we used single-particle Raman microspectroscopy to identify their functional group compositions. From the Raman vibrational spectra of submicron particles (~500-1000 nm aerodynamic diameter), we observed a distinct difference in core-shell morphology and composition: an organic outer layer and an aqueous-inorganic core. The core also has significantly more CH-stretch than the shell. Small changes were also observed with increasing oxidation, which are important to consider when predicting SOA particle evolution in the atmosphere. 
    more » « less