skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High within-clutch repeatability of eggshell phenotype in Barn Swallows despite less maculated last-laid eggs
Abstract Ecological and life-history variation and both interspecific and intraspecific brood parasitism contribute to diversity in egg phenotype within the same species. In this study, Barn Swallows (Hirundo rustica erythrogaster) laid eggs with high intraclutch repeatability in egg size, shape, and maculation. Despite this high intraclutch repeatability, last-laid eggs had consistently less of the eggshell covered in spots and fewer spots than earlier-laid eggs in the clutch. We examined sources of interclutch and intraclutch variation using both direct measurements and custom software (SpotEgg, NaturePatternMatch) that provide detailed information on egg characteristics, especially maculation measures. In addition to our main findings, maculation on different sides of the egg was highly repeatable; however, only shape, proportion of the eggshell maculated, and average spot size were repeatable between first and replacement clutches. Low intraclutch variation in maculation could allow females to recognize their clutch and this may be adaptive for colonial nesting species, such as the Barn Swallow. Characterizing intraspecific variation in egg size, shape, and maculation is the first step in understanding whether intraclutch variation is low enough—and interclutch variation high enough—such that eggs could serve as identity signals.  more » « less
Award ID(s):
1856254
PAR ID:
10348455
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Ornithology
ISSN:
0004-8038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maculation on avian eggshells has the potential to serve as an identity signal, and this information may help females recognize their eggs/nest or reject foreign eggs laid by hetero‐ or conspecific brood parasites. Recognizing eggs could be adaptive in cases where birds nest in dense colonies, as reports of conspecific brood parasitism are over‐represented in colony‐nesting species. We utilized the variation in breeding biology (solitary vs. colonial breeding) and eggshell phenotype in swallows and martins (Hirundinidae) to test for correlated evolution between these traits, while also accounting for nest type, as maculation may camouflage eggs in open‐cup nests. We found that maculated eggs were more likely to be laid by species that breed socially and build open‐cup nests where maculation would be more visible than in dark cavity nests. 
    more » « less
  2. Abstract Across plants and animals, genome size is often correlated with life‐history traits: large genomes are correlated with larger seeds, slower development, larger body size and slower cell division. Among decapod crustaceans, caridean shrimps are among the most variable both in terms of genome size variation and life‐history characteristics such as larval development mode and egg size, but the extent to which these traits are associated in a phylogenetic context is largely unknown. In this study, we examine correlations among egg size, larval development and genome size in two different genera of snapping shrimp,AlpheusandSynalpheus, using phylogenetically informed analyses. In bothAlpheusandSynalpheus, egg size is strongly linked to larval development mode: species with abbreviated development had significantly larger eggs than species with extended larval development. We produced the first comprehensive dataset of genome size inAlpheus(n = 37 species) and demonstrated that genome size was strongly and positively correlated with egg size in bothAlpheusandSynalpheus. Correlated trait evolution analyses showed that inAlpheus, changes in genome size were clearly dependent on egg size. InSynalpheus, evolutionary path analyses suggest that changes in development mode (from extended to abbreviated) drove increases in egg volume; larger eggs, in turn, resulted in larger genomes. These data suggest that variation in reproductive traits may underpin the high degree of variation in genome size seen in a wide variety of caridean shrimp groups more generally. 
    more » « less
  3. Abstract Background Beneficial microbes can be vertically transmitted from mother to offspring in many organisms. In oviparous animals, bacterial transfer to eggs may improve egg success by inhibiting fungal attachment and infection from pathogenic microbes in the nest environment. Vertical transfer of these egg-protective bacteria may be facilitated through behavioral mechanisms such as egg-tending, but many species do not provide parental care. Thus, an important mechanism of vertical transfer may be the passage of the egg through the maternal cloaca during oviposition itself. In this study, we examined how oviposition affects eggshell microbial communities, fungal attachment, hatch success, and offspring phenotype in the striped plateau lizard, Sceloporus virgatus , a species with no post-oviposition parental care. Results Relative to dissected eggs that did not pass through the cloaca, oviposited eggs had more bacteria and fewer fungal hyphae when examined with a scanning electron microscope. Using high throughput Illumina sequencing, we also found a difference in the bacterial communities of eggshells that did and did not pass through the cloaca, and the diversity of eggshell communities tended to correlate with maternal cloacal diversity only for oviposited eggs, and not for dissected eggs, indicating that vertical transmission of microbes is occurring. Further, we found that oviposited eggs had greater hatch success and led to larger offspring than those that were dissected. Conclusions Overall, our results indicate that female S. virgatus lizards transfer beneficial microbes from their cloaca onto their eggs during oviposition, and that these microbes reduce fungal colonization and infection of eggs during incubation and increase female fitness. Cloacal transfer of egg-protective bacteria may be common among oviparous species, and may be especially advantageous to species that lack parental care. 
    more » « less
  4. Abstract Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host’s egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts. 
    more » « less
  5. Community assembly is influenced by disturbance intensity, sequential colonization (arrival order) of species, and interactions between species arriving early and species arriving later. We documented both intra- and interspecific patterns of colonization following hydrological disturbance using a 20-year time series of marsh-fish density at 21 study sites located in the Everglades, Florida, USA, as a case study of sequential colonization. The critical swimming speed (UCRIT) of 20 juveniles and 20 adults for six species was estimated using UCRIT tests to evaluate if UCRIT predicted timing of re-colonization. We observed a consistent pattern of species colonization over 500 disturbance events. On average, juveniles of early arriving species were collected prior to adults, while adults consistently appeared prior to juveniles for late-arriving species. Density at first collection was inversely correlated with arrival order; early arriving species tended to have higher density when first collected following marsh re-flooding than later arriving ones. Females consistently arrived before males for all species where sex could be identified. Neither absolute nor size-adjusted UCRIT was correlated with arrival order. Although interspecific colonization was highly repeatable, intraspecific differences among demographic groups were species-specific and possibly tied to reproductive biology and juvenile life history. Juvenile early arrival may indicate rapid colonization of pregnant females (Poeciliidae), diapausing eggs laid before marsh drying, or early development of robust swimming capacity (Cyprinodontidae and Fundulidae); in the Everglades, water currents are absent or too weak to support larval drift as an important mechanism. Stage- and sex-specific UCRIT and reproductive traits such as embryo diapause in oviparous species need more attention to understand successional dynamics following disturbance in aquatic communities. 
    more » « less