We determine the composition dependence of the transverse and longitudinal optical infrared-active phonon modes in rhombohedral α-(AlxGa1−x)2O3alloys by far-infrared and infrared generalized spectroscopic ellipsometry. Single-crystalline high quality undoped thin-films grown on m-plane oriented α-Al2O3substrates with x = 0.18, 0.37, and 0.54 were investigated. A single mode behavior is observed for all phonon modes, i.e., their frequencies shift gradually between the equivalent phonon modes of the isostructural binary parent compounds. We also provide physical model line shape functions for the anisotropic dielectric functions. We use the anisotropic high-frequency dielectric constants for polarizations parallel and perpendicular to the lattice c axis measured recently by Hilfiker et al. [Appl. Phys. Lett. 119, 092103 (2021)], and we determine the anisotropic static dielectric constants using the Lyddane–Sachs–Teller relation. The static dielectric constants can be approximated by linear relationships between those of α-Ga2O3and α-Al2O3. The optical phonon modes and static dielectric constants will become useful for device design and free charge carrier characterization using optical techniques.
more »
« less
Thickness dependence of dielectric constant of alumina films based on first-principles calculations
Optoelectronic properties of devices made of two-dimensional materials depend largely on the dielectric constant and thickness of a substrate. To systematically investigate the thickness dependence of dielectric constant from first principles, we have implemented a double-cell method based on a theoretical framework by Martyna and Tuckerman [J. Chem. Phys. 110, 2810 (1999)] and therewith developed a general and robust procedure to calculate dielectric constants of slab systems from electric displacement and electric field, which is free from material-specific adjustable parameters. We have applied the procedure to a prototypical substrate, Al 2 O 3 , thereby computing high-frequency and static dielectric constants of a finite slab as a function of the number of crystalline unit-cell layers. We find that two and four layers are sufficient for the high-frequency and static dielectric constants of (0001) Al 2 O 3 slabs to recover 90% of the respective bulk values computed by a Berry-phase method. This method allows one to estimate the thickness dependence of dielectric constants for various materials used in emerging two-dimensional nanophotonics, while providing an analytic formula that can be incorporated into photonics simulations.
more »
« less
- Award ID(s):
- 2036359
- PAR ID:
- 10348464
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 121
- Issue:
- 6
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 062902
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report on the tunable and enhanced dielectric properties of tungsten (W) incorporated gallium oxide (Ga2O3) polycrystalline electroceramics for energy and power electronic device applications. The W‐incorporated Ga2O3(Ga2−2xWxO3, 0.00 ≤ x ≤ 0.20; GWO) compounds were synthesized by the high‐temperature solid‐state chemical reaction method by varying the W‐content. The fundamental aspects of the dielectric properties in correlation with the crystal structure, phase, and microstructure of the GWO polycrystalline compounds has been investigated in detail. A detailed study performed ascertains the W‐induced changes in the dielectric constant, loss tangent (tanδ) and ac conductivity. It was found that the dielectric constant increases with addition of W in the system as a function of temperature (25°C‐500°C). Frequency dependence (102‐106 Hz) of the dielectric constant follows the modified Debye model with a relaxation time of ∼20 to 90 μs and a spreading factor of 0.39 to 0.65. The dielectric constant of GWO is temperature independent almost until ∼300°C, and then increases rapidly in the range of 300°C to 500°C. W‐induced enhancement in the dielectric constant of GWO is fully evident in the frequency and temperature dependent dielectric studies. The frequency and temperature dependent tanδreveals the typical behavior of relaxation loses in GWO. Small polaron hopping mechanism is evident in the frequency dependent electrical transport properties of GWO. The remarkable effect of W‐incorporation on the dielectric and electrical transport properties of Ga2O3is explained by a two‐layer heterogeneous model consisting of thick grains separated by very thin grain boundaries along with the formation of a Ga2O3‐WO3composite was able to account for the observed temperature and frequency dependent electrical properties in GWO. The results demonstrate that the structure, electrical and dielectric properties can be tailored by tuning W‐content in the GWO compounds.more » « less
-
Molecular and collective reorientations in interfacial water are by-and-large decelerated near surfaces subjected to outgoing electric fields (pointing from surface to liquid, i.e., when the surface carries positive charge). In incoming fields at negatively charged surfaces, these rates show a nonmonotonic dependence on field strength where fastest reorientations are observed when the field alignment barely offsets the polarizing effects due to interfacial hydrogen bonding. This extremum coincides with a peak of local static permittivity. We use molecular dynamics simulations to explore the impact of background static field on high frequency AC permittivity in hydration water under an electric field mimicking the conditions inside a capacitor where one of the confinement walls is subject to an outgoing field and the other one to an incoming field. At strong static fields, the absorption peak undergoes a monotonic blue shift upon increasing field strength in both hydration layers. At intermediate fields, however, the hydration region at the wall under an incoming field (the negative capacitor plate) features a red shift coinciding with maximal static-permittivity and reorientation-rate. The shift is mostly determined by the variation of the inverse static dielectric constant as proposed for mono-exponentially decaying polarization correlations. Conversely, hydration water at the opposite (positively charged) surface features a monotonic blue shift consistent with conventional saturation. The sensitivity of absorption peaks on the field suggests that surface charge densities could be deduced from sub-THz dielectric spectroscopy experiments in porous materials when interfaces accommodate a major fraction of water contained in the system.more » « less
-
SiC and Ga 2 O 3 are promising wide band gap semiconductors for applications in power electronics because of their high breakdown electric field and normally off operation. However, lack of a suitable dielectric material that can provide high interfacial quality remains a problem. This can potentially lead to high leakage current and conducting loss. In this work, we present a novel atomic layer deposition process to grow epitaxially Mg x Ca 1− x O dielectric layers on 4H-SiC(0001) and β-Ga 2 O 3 $$\left( {\bar 201} \right)$$ substrates. By tuning the composition of Mg x Ca 1− x O toward the substrate lattice constant, better interfacial epitaxy can be achieved. The interfacial and epitaxy qualities were investigated and confirmed by cross-sectional transmission electron microscopy and X-ray diffraction studies. Mg 0.72 Ca 0.28 O film showed the highest epitaxy quality on 4H-SiC(0001) because of its closest lattice match with the substrate. Meanwhile, highly textured Mg 0.25 Ca 0.75 O films can be grown on β-Ga 2 O 3 $$\left( {\bar 201} \right)$$ with a preferred orientation of (111).more » « less
-
We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity.more » « less
An official website of the United States government

