skip to main content


Title: Expanding beaver pond distribution in Arctic Alaska, 1949 to 2019
Abstract Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into Arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. Here we use 70 years of satellite images and aerial photography to show the scale and magnitude of northwestward beaver expansion in Alaska, indicated by the construction of over 10,000 beaver ponds in the Arctic tundra. The number of beaver ponds doubled in most areas between ~ 2003 and ~ 2017. Earlier stages of beaver engineering are evident in ~ 1980 imagery, and there is no evidence of beaver engineering in ~ 1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. Rapidly expanding beaver engineering has created a tundra disturbance regime that appears to be thawing permafrost and exacerbating the effects of climate change.  more » « less
Award ID(s):
2114051 1850578
NSF-PAR ID:
10348695
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. These data show beaver pond locations in the Alaska Arctic identified in aerial photography and satellite imagery. Black and white aerial photography is from 1949-55, color infrared aerial photography (AHAP) is from 1976-84, and high-resolution satellite imagery is from 2000-2020. The number of beaver ponds doubled in most areas of ~2003 and ~2017 images. Earlier stages of beaver engineering are evident in ~1980 imagery, and there is no evidence of beaver engineering in ~1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. 
    more » « less
  2. In recent decades, beavers have reportedly extended their range from the boreal forest into the arctic tundra, altering tundra streams and surrounding permafrost at local to regional scales. In lower latitudes, beaver damming can convert streams, backwaters, and lake outlets into connected ponds, which in turn can change the course of channels, temperature of streams, sediment loads, energy exchange, aquatic habitat diversity and nutrient cycling, and riparian vegetation. In the Arctic, effects of beavers may include enhanced thawing of permafrost, increased stream temperatures, and changes in seasonal ice in streams, as well as complex ecosystem responses. This study will 1) document movement of beavers from the forest into tundra regions, 2) understand how stream engineering wrought by beavers will change the arctic tundra landscape and streams, and 3) predict how beavers will expand into tundra regions and alter stream and adjacent ecosystems. Results will be of interest to local communities and resource managers, and the team of investigators will convene a scientist and stakeholder workshop in Fairbanks, Alaska to synthesize observations, compare results from studies in temperate ecosystems, and clarify impacts of beaver expansion unique to the tundra biome. In August 2021 we used a ground penetrating radar (GPR) to image the subsurface surrounding beaver ponds in a tundra region around Nome, Alaska. The general objective was to determine if heat from new beaver ponds are impacting permafrost. We used a Mala GX GPR (Mala Ground Explorer GPR) with a 450mhz antenna and an integrated DGPS (differential global positioning system). GPS (global positioning system) location data is stored in the .cor file. 
    more » « less
  3. In recent decades, beavers have reportedly extended their range from the boreal forest into the arctic tundra, altering tundra streams and surrounding permafrost at local to regional scales. In lower latitudes, beaver damming can convert streams, backwaters, and lake outlets into connected ponds, which in turn can change the course of channels, temperature of streams, sediment loads, energy exchange, aquatic habitat diversity and nutrient cycling, and riparian vegetation. In the Arctic, effects of beavers may include enhanced thawing of permafrost, increased stream temperatures, and changes in seasonal ice in streams, as well as complex ecosystem responses. This study will 1) document movement of beavers from the forest into tundra regions, 2) understand how stream engineering wrought by beavers will change the arctic tundra landscape and streams, and 3) predict how beavers will expand into tundra regions and alter stream and adjacent ecosystems. Results will be of interest to local communities and resource managers, and the team of investigators will convene a scientist and stakeholder workshop in Fairbanks, Alaska to synthesize observations, compare results from studies in temperate ecosystems, and clarify impacts of beaver expansion unique to the tundra biome. In March and April 2022 we used a ground penetrating radar (GPR) to image the subsurface surrounding beaver ponds in a tundra region around Nome, Alaska. We used a Mala GX GPR (Mala Ground Explorer GPR) with a 160 megahertz (mhz) antenna and an integrated DGPS (differential global positioning system). GPS (global positioning system) location data is stored in the .cor file. 
    more » « less
  4. Abstract

    Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes.

     
    more » « less
  5. Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing. 
    more » « less