Computational thinking CT is central to computer science, yet there is a gap in the literature on the best ways to implement CT in early childhood classrooms. The purpose of this qualitative study was to explore how early childhood teachers enacted asset-based pedagogies while implementing CT in their classrooms. We followed a group of 28 early childhood educators who began with a summer institute and then participated in multiple professional learning activities over one year. Examining a subset of the larger group, findings illustrate how teachers intentionally created learning communities that empowered students and utilized their expertise to guide CT learning in their classrooms. Teachers recognized that asset-based approaches to CT instruction empowered not just their students but also themselves. By using asset-based CT pedagogies, early childhood teachers can better support students from marginalized communities, reducing achievement gaps and inequities in digital learning.
more »
« less
Instructor facilitation of STEM+CT discourse: engaging, prompting and guiding students’ computational modeling in physics
The integration of computational modeling into instruction in science classrooms is complex in that it requires the synergistic application of students’ developing science and computational thinking knowledge. This is not only difficult for students, but teachers often find it hard to parse the science content from the computational constructs to guide students when they have difficulties. Leveraging past literature that highlights the beneficial impact instructors can have when they immerse themselves in group problem-solving discussions, this paper examines the instructors’ role in facilitating students’ construction of and problem-solving with computational models. We utilize a case study approach to analyze instructor-facilitated, synchronous group discussions during applications of synergistic learning processes to understand how instructors may elicit students’ knowledge, misunderstanding, and difficulties to help guide, prompt, and engage groups in this complex task for more productive integration in K-12 science classrooms. We hope that this will lead to better scaffolding of students' learning, and better support for teachers when they use such curricula in classrooms.
more »
« less
- Award ID(s):
- 2017000
- PAR ID:
- 10348699
- Editor(s):
- Chinn, C.
- Date Published:
- Journal Name:
- Computersupported collaborative learning
- ISSN:
- 1573-4552
- Page Range / eLocation ID:
- 631-639
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grieff, S. (Ed.)Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks.more » « less
-
Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the results of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices.more » « less
-
In an effort to deepen learning in K-12 science classrooms, there has been a national movement to integrate computational thinking (CT). The purpose of this phenomenographic study was to understand teachers’ perceptions of the function and usefulness of a task analysis and a decision tree tool designed to help them with integration. Teachers participated in a long-term professional development to improve their knowledge and application of CT and then developed lesson plans integrating CT into science investigations. To assist in the integration, teachers used the two unique tools. No one lesson plan or content area addressed all of the CT practices, but all CT practices were addressed in lessons across all four science areas. All 19 teachers found that the task analysis tool helped them to shift their lessons to a student-centered focus and helped them pinpoint data practices so they could systematically integrate CT practices. However, they expressed confusion over the amount of detail to document on the tool. Similarly, teachers found both benefits and barriers to the decision tree tool. Teachers found the decision tree tool to be useful in predicting the ways students may misunderstand a data practice and in reflecting on the level of accomplishment of students. However, teachers were sometimes uncertain with how to efficiently document complex student behaviors when engaged with data practices and CT. Implications for the use of the two lesson planning tools is discussed.more » « less
-
AbstractRecent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open‐ended environments. AI systems are known to underperform humans in (1) interpreting students' emotions in learning contexts, (2) grasping the nuances of social interactions and (3) understanding domain‐specific information that was not well‐represented in the training data. As such, combined human and AI (ie, hybrid) approaches are needed to overcome the current limitations of AI systems. In this paper, we take a first step towards investigating how a human‐AI collaboration between teachers and researchers using an AI‐generated multimodal timeline can guide and support teachers' feedback while addressing students' STEM+C difficulties as they work collaboratively to build computational models and solve problems. In doing so, we present a framework characterizing the human component of our human‐AI partnership as a collaboration between teachers and researchers. To evaluate our approach, we present our timeline to a high school teacher and discuss the key insights gleaned from our discussions. Our case study analysis reveals the effectiveness of an iterative approach to using human‐AI collaboration to address students' STEM+C challenges: the teacher can use the AI‐generated timeline to guide formative feedback for students, and the researchers can leverage the teacher's feedback to help improve the multimodal timeline. Additionally, we characterize our findings with respect to two events of interest to the teacher: (1) when the students cross adifficulty threshold,and (2) thepoint of intervention, that is, when the teacher (or system) should intervene to provide effective feedback. It is important to note that the teacher explained that there should be a lag between (1) and (2) to give students a chance to resolve their own difficulties. Typically, such a lag is not implemented in computer‐based learning environments that provide feedback. Practitioner notesWhat is already known about this topicCollaborative, open‐ended learning environments enhance students' STEM+C conceptual understanding and practice, but they introduce additional complexities when students learn concepts spanning multiple domains.Recent advances in generative AI and MMLA allow for integrating multiple datastreams to derive holistic views of students' states, which can support more informed feedback mechanisms to address students' difficulties in complex STEM+C environments.Hybrid human‐AI approaches can help address collaborating students' STEM+C difficulties by combining the domain knowledge, emotional intelligence and social awareness of human experts with the general knowledge and efficiency of AI.What this paper addsWe extend a previous human‐AI collaboration framework using a hybrid intelligence approach to characterize the human component of the partnership as a researcher‐teacher partnership and present our approach as a teacher‐researcher‐AI collaboration.We adapt an AI‐generated multimodal timeline to actualize our human‐AI collaboration by pairing the timeline with videos of students encountering difficulties, engaging in active discussions with a high school teacher while watching the videos to discern the timeline's utility in the classroom.From our discussions with the teacher, we define two types ofinflection pointsto address students' STEM+C difficulties—thedifficulty thresholdand theintervention point—and discuss how thefeedback latency intervalseparating them can inform educator interventions.We discuss two ways in which our teacher‐researcher‐AI collaboration can help teachers support students encountering STEM+C difficulties: (1) teachers using the multimodal timeline to guide feedback for students, and (2) researchers using teachers' input to iteratively refine the multimodal timeline.Implications for practice and/or policyOur case study suggests that timeline gaps (ie, disengaged behaviour identified by off‐screen students, pauses in discourse and lulls in environment actions) are particularly important for identifying inflection points and formulating formative feedback.Human‐AI collaboration exists on a dynamic spectrum and requires varying degrees of human control and AI automation depending on the context of the learning task and students' work in the environment.Our analysis of this human‐AI collaboration using a multimodal timeline can be extended in the future to support students and teachers in additional ways, for example, designing pedagogical agents that interact directly with students, developing intervention and reflection tools for teachers, helping teachers craft daily lesson plans and aiding teachers and administrators in designing curricula.more » « less
An official website of the United States government

