We report on the sensitivity of enhanced ozone (O3) production, observed during lake breeze circulation along the coastline of Lake Michigan, to the concentrations of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). We assess the sensitivity of O3 production to NOx and VOC on a high O3 day during the Lake Michigan Ozone Study 2017 (LMOS 2017) using an observationally-constrained chemical box model that implements the Master Chemical Mechanism (MCM v3.3.1) and recent emission inventories for NOx and VOCs. The MCM model is coupled to a backward air mass trajectory analysis from a ground supersite in Zion, IL where an extensive series of measurements of O3 precursors and their oxidation products, including hydrogen peroxide (H2O2), nitric acid (HNO3), and particulate nitrates (NO3-) serve as model constraints. We evaluate the chemical evolution of the Chicago-Gary urban plume as it advects over Lake Michigan and demonstrate how modeled indicators of VOC- vs. NOx- sensitive regimes can be constrained by measurements at the trajectory endpoint. Using the modeled ratio of the instantaneous H2O2 and HNO3 production rates (PH2O2 / PHNO3), we suggest that O3 production over the urban source region is strongly VOC-sensitive and progresses towards a more NOx-sensitive regime as the plume advects north along the Lake Michigan coastline on this day. We also demonstrate that ground-based measurements of the mean concentration ratio of H2O2 to HNO3 describe the sensitivity of O3 production to VOC and NOx as the integral of chemical production along the plume path.
more »
« less
Direct measurements of ozone response to emissions perturbations in California
Abstract. A new technique was used to directly measure O3 response to changes inprecursor NOx and volatile organic compound (VOC) concentrations in the atmosphere using threeidentical Teflon smog chambers equipped with UV lights. One chamberserved as the baseline measurement for O3 formation, one chamber addedNOx, and one chamber added surrogate VOCs (ethylene, m-xylene,n-hexane). Comparing the O3 formation between chambers over a3-hour UV cycle provides a direct measurement of O3 sensitivity toprecursor concentrations. Measurements made with this system at Sacramento,California, between April–December 2020 revealed that theatmospheric chemical regime followed a seasonal cycle. O3 formation wasVOC-limited (NOx-rich) during the early spring, transitioned toNOx-limited during the summer due to increased concentrations ofambient VOCs with high O3 formation potential, and then returned toVOC-limited (NOx-rich) during the fall season as the concentrations ofambient VOCs decreased and NOx increased. This seasonal pattern ofO3 sensitivity is consistent with the cycle of biogenic emissions inCalifornia. The direct chamber O3 sensitivity measurements matchedsemi-direct measurements of HCHO/NO2 ratios from the TROPOsphericMonitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (Sentinel-5P) satellite. Furthermore, the satellite observations showed thatthe same seasonal cycle in O3 sensitivity occurred over most of theentire state of California, with only the urban cores of the very largecities remaining VOC-limited across all seasons. The O3-nonattainmentdays (MDA8 O3>70 ppb) have O3 sensitivity in theNOx-limited regime, suggesting that a NOx emissions controlstrategy would be most effective at reducing these peak O3concentrations. In contrast, a large portion of the days with MDA8 O3concentrations below 55 ppb were in the VOC-limited regime, suggesting thatan emissions control strategy focusing on NOx reduction would increaseO3 concentrations. This challenging situation suggests that emissionscontrol programs that focus on NOx reductions will immediately lowerpeak O3 concentrations but slightly increase intermediate O3concentrations until NOx levels fall far enough to re-enter theNOx-limited regime. The spatial pattern of increasing and decreasingO3 concentrations in response to a NOx emissions control strategyshould be carefully mapped in order to fully understand the public healthimplications.
more »
« less
- Award ID(s):
- 1735040
- PAR ID:
- 10348810
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 7
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 4929 to 4949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The summertime surface ozone (O3) concentrations over Southeast Michigan (SEMI) often exceed 70 ppbv. However, the associated O3 formation regime is still not well known. In this study, we examined the chemical drivers of O3 exceedances in SEMI, based on the Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign during the period of May 20 – June 30, 2021. We employed a zero-dimensional (0-D) box model, which was constrained by measurements of meteorology and trace gas concentrations during MOOSE. Our model simulations demonstrated that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the VOC- and NOx-limited O3 production regimes was 3.0 ± 0.3 (mean ± 1σ) in SEMI. The midday (12:00-16:00) averaged HCHO/NO2 ratio during MOOSE was 1.62 ± 1.03, suggesting that O3 production in SEMI was likely limited by VOC emissions. Our study has significant implications for air quality policy and the design of effective O3 pollution control strategies through ground-based HCHO/NO2 measurements and model simulations.more » « less
-
The Wasatch Front in Utah, USA is currently a non-attainment area for ozone according to the Environmental Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS). Nitrogen oxides (NOx = NO2 + NO) and volatile organic compounds (VOCs) in the presence of sunlight lead to ozone formation in the troposphere. When the rate of oxidant production, defined as the sum of O3 and NO2, is faster than the rate of NOx production, a region is said to be NOx-limited and ozone formation will be limited by the concentration of NOx species in the region. The inverse of this situation makes the region VOC-limited. Knowing if a region is NOx-limited or VOC-limited can aid in generating effective mitigation strategies. Understanding the background or regional contributions to ozone in a region, whether it be from the transport of precursors or of ozone, provides information about the lower limit for ozone concentrations that a region can obtain with regulation of local precursors. In this paper, measured oxidant and NOx concentrations are analyzed from 14 counties in the state of Utah to calculate the regional and local contributions to ozone for each region. This analysis is used to determine the nature of the atmosphere in each county by determining if the region is VOC- or NOx-limited. Furthermore, this analysis is performed for each county for the years 2012 and 2022 to determine if there has been a change in the oxidative nature and quantify the regional and local contributions to ozone over a 10-year period. All studied counties—except for Washington County—in Utah were found to be VOC-limited in 2012. This shifted in 2022 to most counties being either in a transitional state or being NOx-limited. Local contributions to ozone increased in two major counties, Cache and Salt Lake Counties, but decreased in Carbon, Davis, Duchesne, Uinta, Utah, Washington, and Weber Counties. Generally, the regional contributions to oxidant concentrations decreased across the state. A summertime spike in both regional and local contributions to oxidants was seen. Smoke from wildfires was seen to increase the regional contributions to oxidants and shift the local regime to be more NOx-limited.more » « less
-
Abstract. Dry deposition of ozone (O3) to the ocean surface and the ozonolysis of organics in the sea surface microlayer (SSML) are potential sources of volatile organic compounds (VOCs) to the marine atmosphere. We use a gas chromatography system coupled to a Vocus proton-transfer-reaction time-of-flight mass spectrometer to determine the chemical composition and product yield of select VOCs formed from ozonolysis of coastal seawater collected from Scripps Pier in La Jolla, California. Laboratory-derived results are interpreted in the context of direct VOC vertical flux measurements made at Scripps Pier. The dominant products of laboratory ozonolysis experiments and the largest non-sulfur emission fluxes measured in the field correspond to Vocus CxHy+ and CxHyOz+ ions. Gas chromatography (GC) analysis suggests that C5–C11 oxygenated VOCs, primarily aldehydes, are the largest contributors to these ion signals. In the laboratory, using a flow reactor experiment, we determine a VOC yield of 0.43–0.62. In the field at Scripps Pier, we determine a maximum VOC yield of 0.04–0.06. Scaling the field and lab VOC yields for an average O3 deposition flux and an average VOC structure results in an emission source of 10.7 to 167 Tg C yr−1, competitive with the DMS source of approximately 20.3 Tg C yr−1. This study reveals that O3 reactivity to dissolved organic carbon can be a significant carbon source to the marine atmosphere and warrants further investigation into the speciated VOC composition from different seawater samples and the reactivities and secondary organic aerosol (SOA) yields of these molecules in marine-relevant, low NOx conditions.more » « less
-
Abstract. Tropospheric ozone results from in situ chemical formation and stratosphere–troposphere exchange (STE), with the latter being more important in the middle and upper troposphere than in the lower troposphere. Ozone photochemical formation is nonlinear and results from the oxidation of methane and non-methane hydrocarbons (NMHCs) in the presence of nitrogen oxide (NOx=NO+NO2). Previous studies showed that O3 short- and long-term trends are nonlinearly controlled by near-surface anthropogenic emissions of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides, which may also be impacted by the long-range transport (LRT) of O3 and its precursors. In addition, several studies have demonstrated the important role of STE in enhancing ozone levels, especially in the midlatitudes. In this article, we investigate tropospheric ozone spatial variability and trends from 2005 to 2019 and relate those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone (TrC-O3) and its precursors, nitrogen dioxide (TrC-NO2), formaldehyde (TrC-HCHO), and total column CO (TC-CO), as well as ozonesonde data and model simulations. Our results indicate a complex relationship between tropospheric ozone column levels, surface ozone levels, and ozone precursors. While the increasing trends of near-surface ozone concentrations can largely be explained by variations in VOC and NOx concentration under different regimes, TrC-O3 may also be affected by other variables such as tropopause height and STE as well as LRT. Decreasing or increasing trends in TrC-NO2 have varying effects on TrC-O3, which is related to the different local chemistry in each region. We also shed light on the contribution of NOx lightning and soil NO and nitrous acid (HONO) emissions to trends of tropospheric ozone on regional and global scales.more » « less
An official website of the United States government

