skip to main content


Title: Defective Ultrathin ZnIn 2 S 4 for Photoreductive Deuteration of Carbonyls Using D 2 O as the Deuterium Source
Abstract

Deuterium (D) labeling is of great value in organic synthesis, pharmaceutical industry, and materials science. However, the state‐of‐the‐art deuteration methods generally require noble metal catalysts, expensive deuterium sources, or harsh reaction conditions. Herein, noble metal‐free and ultrathin ZnIn2S4(ZIS) is reported as an effective photocatalyst for visible light‐driven reductive deuteration of carbonyls to produce deuterated alcohols using heavy water (D2O) as the sole deuterium source. Defective two‐dimensional ZIS nanosheets (D‐ZIS) are prepared in a surfactant assisted bottom‐up route exhibited much enhanced performance than the pristine ZIS counterpart. A systematic study is carried out to elucidate the contributing factors and it is found that the in situ surfactant modification enabled D‐ZIS to expose more defect sites for charge carrier separation and active D‐species generation, as well as high specific surface area, all of which are beneficial for the desirable deuteration reaction. This work highlights the great potential in developing low‐cost semiconductor‐based photocatalysts for organic deuteration in D2O, circumventing expensive deuterium reagents and harsh conditions.

 
more » « less
Award ID(s):
1955358 1955336
NSF-PAR ID:
10366683
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
3
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of non‐noble metal materials for efficient hydrogen evolution reaction (HER) in wide pH range is still a challenge at present. Herein, a predesigned polyoxometalate (POM)‐based metal–organic polymer {L3Co2 · 6H2O}[H3GeMo12O40] · 9H2O (L = 1,2,4‐triazole) is employed as bimetallic source together with thiourea converting to CoS2@MoS2on carbon cloth (CC) (abbreviated to CoS2@MoS2@CC) for the first time. Impressively, the CoS2@MoS2in the form of vertically interconnected nanoarrays with multiple interfaces are grown in situ on CC and act as electrodes directly for HER. The CoS2@MoS2@CC‐30h composite exhibits superb activity and long‐durability in both acidic and alkaline media. Low overpotential is achieved in 0.5mH2SO4(65 mV) and 1.0mKOH (87 mV) for 10 mA cm−2versus RHE, which overmatch major MoS2‐/POM‐based electrocatalysts. This work therefore may shed substantial lights on designing active and durable molybdenum‐based bi‐/polymetallic sulfide from variable POM‐based metal–organic polymers for electrocatalytic hydrogen evolution reaction in wide pH range.

     
    more » « less
  2. Abstract

    There is an ongoing effort to replace rare and expensive noble‐element catalysts with more abundant and less expensive transition metal oxides. With this goal in mind, the intrinsic defects of a rhombohedral perovskite‐like structure of LaMnO3and their implications on CO catalytic properties were studied. Surface thermodynamic stability as a function of pressure (P) and temperature (T) were calculated to find the most stable surface under reaction conditions (P=0.2 atm, T=323 K to 673 K). Crystallographic planes (100), (111), (110), and (211) were evaluated and it was found that (110) with MnO2termination was the most stable under reaction conditions. Adsorption energies of O2and CO on (110) as well as the effect of intrinsic defects such as Mn and O vacancies were also calculated. It was found that O vacancies favor the interaction of CO on the surface, whereas Mn vacancies can favor the formation of carbonate species.

     
    more » « less
  3. The synthesis and characterization of an iridium polyhydride complex ( Ir-H4 ) supported by an electron-rich PCP framework is described. This complex readily loses molecular hydrogen allowing for rapid room temperature hydrogen isotope exchange (HIE) at the hydridic positions and the α-C–H site of the ligand with deuterated solvents such as benzene-d 6 , toluene-d 8 and THF-d 8 . The removal of 1–2 equivalents of molecular H 2 forms unsaturated iridium carbene trihydride ( Ir-H3 ) or monohydride ( Ir-H ) compounds that are able to create further unsaturation by reversibly transferring a hydride to the ligand carbene carbon. These species are highly active hydrogen isotope exchange (HIE) catalysts using C 6 D 6 or D 2 O as deuterium sources for the deuteration of a variety of substrates. By modifying conditions to influence the Ir-Hn speciation, deuteration levels can range from near exhaustive to selective only for sterically accessible sites. Preparative level deuterations of select substrates were performed allowing for procurement of >95% deuterated compounds in excellent isolated yields; the catalyst can be regenerated by treatment of residues with H 2 and is still active for further reactions. 
    more » « less
  4. Abstract

    Single atom catalysts (SACs) are considered as the emerging catalysts for boosting electricity‐driven CO2reduction reaction (CRR) and hydrogen evolution reaction (HER). To replace the rare and expensive noble metal electrocatalysts, developing nonprecious metal SACs (NPMSACs) with superior electrocatalytic activity and stability is of paramount importance for achieving high efficiency in CRR and HER. Herein, a brief overview of recent achievements in the carbon‐rich NPMSACs for both CRR and HER is provided. The synthesis strategies and corresponding electrocatalytic performances of various carbon‐rich NPMSACs are discussed in the order of various metals (Ni, Co, Fe, Zn, and Sn for CRR, as well as Ni, Co, Fe, Mo, and W for HER), with a special attention paid to understand the structure–activity relationships. Finally, the remaining challenges and future perspectives for enhancing CRR and HER performance of NPMSACs are outlined.

     
    more » « less
  5. Abstract

    High quality dielectric‐semiconductor interfaces are critical for reliable high‐performance transistors. This paper reports the in situ metal–organic chemical vapor deposition of Al2O3on β‐Ga2O3as a potentially better alternative to the most commonly used atomic layer deposition (ALD). The growth of Al2O3is performed in the same reactor as Ga2O3using trimethylaluminum and O2as precursors without breaking the vacuum at a growth temperature of 600 °C. The fast and slow near interface traps at the Al2O3/β‐Ga2O3interface are identified and quantified using stressed capacitance–voltage (CV) measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The density of shallow and deep level initially filled traps (Dit) are measured using ultraviolet‐assisted CV technique. The average Ditfor the MOSCAP is determined to be 6.4×1011cm−2eV−1. The conduction band offset of the Al2O3/ Ga2O3interface is also determined from CV measurements and found out to be 1.7 eV which is in close agreement with the existing literature reports of ALD Al2O3/Ga2O3interface. The current–voltage characteristics are also analyzed and the average breakdown field is extracted to be approximately 5.8 MV cm−1. This in situ Al2O3dielectric on β‐Ga2O3with improved dielectric properties can enable Ga2O3‐based high‐performance devices.

     
    more » « less