skip to main content


Title: Super‐resolution analyzing spatial organization of lysosomes with an organic fluorescent probe
Abstract

Lysosomes are multifunctional organelles involved in macromolecule degradation, nutrient sensing, and autophagy. Live imaging has revealed lysosome subpopulations with dynamics and characteristic cellular localization. An as‐yet unanswered question is whether lysosomes are spatially organized to coordinate and integrate their functions. Combined with super‐resolution microscopy, we designed a small organic fluorescent probe—TPAE—that targeted lysosomes with a large Stokes shift. When we analyzed the spatial organization of lysosomes against mitochondria in different cell lines with this probe, we discovered different distance distribution patterns between lysosomes and mitochondria during increased autophagy flux. By usingSLC25A46mutation fibroblasts derived from patients containing highly fused mitochondria with low oxidative phosphorylation, we concluded that unhealthy mitochondria redistributed the subcellular localization of lysosomes, which implies a strong connection between mitochondria and lysosomes.

 
more » « less
Award ID(s):
1955358
NSF-PAR ID:
10445420
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Exploration
Volume:
2
Issue:
3
ISSN:
2766-2098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ginsberg, Stephen D. (Ed.)

    Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblastsin vitroand in mouse developmental Purkinje cellsex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type andNpc1nmf164mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.

     
    more » « less
  2. Abstract Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future. 
    more » « less
  3. GM1 gangliosidosis is a lysosomal storage disorder caused by deficiency of β-galactosidase (βgal) and subsequent accumulation of GM1 ganglioside in lysosomes. One of the pathological aspects of GM1 gangliosidosis, and other storage disorders, is impaired autophagy, i.e., a reduced fusion of autophagosomes and lysosomes to degrade cellular waste. Enzyme replacement therapy (ERT) can effectively treat systemic deficiency but is limited by immunogenicity and shortened half-life of intravenously administered enzyme. In this paper, we report a hyaluronic acid-b-polylactic acid (HA-PLA) polymersome delivery system that can achieve an enzyme-responsive and sustained delivery of βgal to promote the cell’s self-healing process of autophagy. HA-PLA polymersomes have an average diameter of 138.0 ± 17.6 nm and encapsulate βgal with an efficiency of 77.7 ± 3.4%. In the presence of model enzyme Hyaluronidase, HA-PLA polymersomes demonstrate a two-fold higher release of encapsulant than without enzyme. We also identified reduced autophagy in a cellular model of GM1 Gangliosidosis (GM1SV3) compared to healthy cells, illustrated using immunofluorescence. Enhanced autophagy was reported in GM1SV3 cells treated with βgal-loaded polymersomes. Most notably, the fusion of lysosomes and autophagosomes in GM1SV3 cells returned to normal levels of healthy cells after 24 h of polymersome treatment. The HA-PLA polymersomes described here can provide a promising delivery system to treat GM1 Gangliosidosis.

     
    more » « less
  4. Key points

    Association of plasma membrane BKCachannels with BK‐β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCachannel (mitoBKCa) by BK‐β subunits is not established.

    MitoBKCa‐α and the regulatory BK‐β1 subunit associate in mouse cardiac mitochondria.

    A large fraction of mitoBKCadisplay properties similar to that of plasma membrane BKCawhen associated with BK‐β1 (left‐shifted voltage dependence of activation,V1/2 = −55 mV, 12 µmmatrix Ca2+).

    In BK‐β1 knockout mice, cardiac mitoBKCadisplayed a lowPoand a depolarizedV1/2of activation (+47 mV at 12 µmmatrix Ca2+)

    Co‐expression of BKCawith the BK‐β1 subunit in HeLa cells doubled the density of BKCain mitochondria.

    The present study supports the view that the cardiac mitoBKCachannel is functionally modulated by the BK‐β1 subunit; proper targeting and activation of mitoBKCashapes mitochondrial Ca2+handling.

    Abstract

    Association of the plasma membrane BKCachannel with auxiliary BK‐β1–4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa) with regulatory subunits is unknown. We report that mitoBKCafunctionally associates with its regulatory subunit BK‐β1 in adult rodent cardiomyocytes. Cardiac mitoBKCais a calcium‐ and voltage‐activated channel that is sensitive to paxilline with a large conductance for K+of 300 pS. Additionally, mitoBKCadisplays a high open probability (Po) and voltage half‐activation (V1/2 = −55 mV,n = 7) resembling that of plasma membrane BKCawhen associated with its regulatory BK‐β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa‐α and its BK‐β1 subunit. Mitochondria from the BK‐β1 knockout (KO) mice showed sparse mitoBKCacurrents (five patches with mitoBKCaactivity out of 28 total patches fromn = 5 different hearts), displaying a depolarizedV1/2of activation (+47 mV in 12 µmmatrix Ca2+). The reduced activity of mitoBKCawas accompanied by a high expression of BKCatranscript in the BK‐β1 KO, suggesting a lower abundance of mitoBKCachannels in this genotype. Accordingly, BK‐β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCathat specifically targets mitochondria) into mitochondria by two‐fold. Importantly, both paxilline‐treated and BK‐β1 KO mitochondria displayed a more rapid Ca2+overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCaassociates with its regulatory BK‐β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCachannel that helps to maintain mitochondrial Ca2+homeostasis.

     
    more » « less
  5. Abstract

    As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane‐anchored pH probe,ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super‐resolution technology. Being sensitive to acidity with increasing fluorescence at low pH,ECGreencan differentiate early and late endosomes as well as endolysosomes. Meanwhile, membrane anchoring not only improves the durability ofECGreen, but also provides an excellent anti‐photobleaching property for long‐time imaging with SIM. Moreover, by taking these advantages ofECGreen, a multidimensional analysis model containing spatial, temporal, and pH information is successfully developed for elucidating the dynamics of endocytic vesicles and their interactions with mitochondria during autophagy, and reveals a fast conversion of endosomes near the plasma membrane.

     
    more » « less