skip to main content

This content will become publicly available on July 10, 2023

Title: Performance Modeling and Analysis of a Thermoelectric Building Envelope for Space Heating.
To provide energy-efficient space heating and cooling, a thermoelectric building envelope (TBE) embeds thermoelectric devices in building walls. The thermoelectric device in the building envelope can provide active heating and cooling without requiring refrigerant use and energy transport among subsystems. Thus, the TBE system is energy and environmentally friendly. A few studies experimentally investigated the TBE under limited operating conditions, and only simplified models for the commercial thermoelectric module (TEM) were developed to quantify its performance. A holistic approach to optimum system performance is needed for the optimal system design and operation. The study developed a holistic TBE-building system model in Modelica for system simulation and performance analysis. A theoretical model for a single TEM was first established based on energy conversion and thermoelectric principles. Subsequently, a TBE prototype model combining the TEM model was constructed. The prototype model employing a feedback controller was used in a whole building system simulation for a residential house. The system model computed the overall building energy efficiency and dynamic indoor conditions under varying operating conditions. Simulation results indicate the studied TBE system can meet a heating demand to maintain the desired room temperature at 20 °C when the lowest outdoor temperature is at more » -26.3 °C, with a seasonal heating COP near 1.1, demonstrating a better heating performance than electric heaters. It suggests a potential energy-efficient alternative to the traditional natural gas furnaces and electric heaters for space heating. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1805818
Publication Date:
NSF-PAR ID:
10348987
Journal Name:
2022 (7th) International High Performance Buildings Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. A thermoelectric building envelope (TBE) is a new type of active building envelope that incorporates thermoelectric material in the building's enclosure. In TBE, the electrical energy and thermal energy can transfer between them through thermoelectric material. As a result, TBE can provide cooling or heating to indoor space if power is applied. TBE-based cooling or heating has high reliability and a low maintenance cost, low CO2 emission, and no refrigerant use. TBE is conducive to the operation of net-zero energy and greenhouse gas emission buildings by using renewable energy. In this study, a multi-stage TBE prototype for space heating and cooling was designed, assembled, and tested. The performance of the TBE prototype was evaluated in two psychrometric chambers with controlled temperature and humidity in Herrick Laboratory at Purdue University. The performance was analyzed, including the surface and air temperatures, cooling capacity, and COP defined as the ratio of cooling capacity to the power input. The test result indicated that the COP of TBE in summer scenarios ranged from 0.46 to 2.4 with varied power inputs. The cooling capacity of one prototype can exceed 6.3 kW/cm2. The findings discussed can guide the design and operation of TBE.
  2. A thermoelectric building envelope (TBE) is a new type of active building envelope that incorporates thermoelectric material in the building’s enclosure. In TBE, the electrical energy and thermal energy can transfer between them through thermoelectric material. TBE can provide cooling or heating to indoor space if power is applied. TBE-based cooling or heating is quiet and reliable and has low maintenance cost, low or no CO2 emission. TBE is conducive to the operation of net-zero energy and emission buildings by using renewable and low-grade energy. In this study, a multi-stage TBE prototype was designed, assembled, and tested. The performance of the TBE prototype was evaluated in two psychrometric chambers with controlled temperature and humidity in Herrick Laboratory at Purdue University. The test result concludes that the highest COP of TBE is 0.46–2.4 in summer scenarios for different power inputs. The findings discussed can guide the design and operation of TBE.
  3. To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur inmore »the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current.« less
  4. A unique paradox exists between the early and modern architectural and mechanical means of dealing with humidity in and around buildings. Traditional architectural conditions of biopolymeric thatch dwellings accommodated human thermal comfort through dehumidification by the materials employed at the building envelope. Original mechanical developments for dehumidification processes were developed specifically for removing moisture from materials in industrial applications. However, today, the modes by which humidity is treated for human comfort and material protection is inverted: buildings now utilize mechanical conditioning for dehumidification cooling functions and moisture protective materials in the building enclosure systems. Emerging multivalent hydrophilic materials are able to process humidity and moisture transport in new ways to allow for a systemic return to dehumidification cooling functions integrated in the building envelope system. The hydrophilic polymers are synthesized with low energy methods and poured into molds and then lyophilized to create macroporous networks that enhance both the sorption and thermal characteristics in the proposed application. The thermal and optical properties of novel hygrothermal materials are identified and used as inputs for simulation modeling for the proposed multivalent building enclosure system. The initial results provide improvements on annual energy loads and consumption for hot-humid climate conditions (Miami and Mumbai).more »The introduction of a sorption coefficient for the dehumidification function provides a unique contribution to design and performance analyses of double-skin envelopes. In addition, the dynamic modeling for temporal variations of material properties at the envelope also provides a new contribution to the field of building performance simulation. The challenges of these novel modes for moisture processing in the building envelope materials are addressed, with future work required for microbial identification and monitoring. The advantages from initial analytical and simulation modeling convey improvements for building energy conservation, natural daylighting, and water recuperation potential.« less
  5. Large-scale concrete 3D printing and digital construction has brought enormous potential to expand the design space of building components (e.g., building envelope) for the integration of multiple architectural functionalities including energy saving. In this research, a modular 3D printed vertical concrete green wall system – namely the 3D-VtGW, was developed. The 3D-VtGW envelope was assembled with prefabricated (3D printed) multifunctional wall modular elements, which serves as the enclosure of the building as well as the backbone for a green wall system to improve building’s energy efficiency. Using this design concept and large-scale concrete 3D printing, a prototype commercial building was built in Nanjing, China. To quantify the energy-saving potential of the 3D-VtGW system, a thermal network model was developed to simulate the thermal behavior of buildings with 3D-VtGW system and for thermal comfort analysis. Whole-building energy simulation was carried out using Chinese Standard Weather Data (CSWD) o Nanjing, China. The simulation results indicate that the building with 3D-VtGW exhibited prominent potential for energy saving and improved thermal comfort. The integrated greenery system in 3D-VtGW largely reduces wall exterior surface temperature and through-wall heat flux via the combined effects of plant shading, evapotranspiration, and heat storage from soil. This study presentsmore »the immense opportunities brought by digital fabrication and construction to extend the design space and function integration in buildings.« less