We propose a structure-preserving model-reduction methodology for large-scale dynamic networks with tightly-connected components. First, the coherent groups are identified by a spectral clustering algorithm on the graph Laplacian matrix that models the network feedback. Then, a reduced network is built, where each node represents the aggregate dynamics of each coherent group, and the reduced network captures the dynamic coupling between the groups. We provide an upper bound on the approximation error when the network graph is randomly generated from a weight stochastic block model. Finally, numerical experiments align with and validate our theoretical findings.
more »
« less
Strong Consistency, Graph Laplacians, and the Stochastic Block Model
Spectral clustering has become one of the most popular algorithms in data clustering and community detection. We study the performance of classical two-step spectral clustering via the graph Laplacian to learn the stochastic block model. Our aim is to answer the following question: when is spectral clustering via the graph Laplacian able to achieve strong consistency, i.e., the exact recovery of the underlying hidden communities? Our work provides an entrywise analysis (an ℓ∞-norm perturbation bound) of the Fiedler eigenvector of both the unnormalized and the normalized Laplacian associated with the adjacency matrix sampled from the stochastic block model. We prove that spectral clustering is able to achieve exact recovery of the planted community structure under conditions that match the information-theoretic limits.
more »
« less
- Award ID(s):
- 1934568
- PAR ID:
- 10349079
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 22
- Issue:
- 117
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1 - 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of learning latent community structure from multiple correlated networks. We study edge-correlated stochastic block models with two balanced communities, focusing on the regime where the average degree is logarithmic in the number of vertices. Our main result derives the precise information-theoretic threshold for exact community recovery using multiple correlated graphs. This threshold captures the interplay between the community recovery and graph matching tasks. In particular, we uncover and characterize a region of the parameter space where exact community recovery is possible using multiple correlated graphs, even though (1) this is information-theoretically impossible using a single graph and (2) exact graph matching is also information-theoretically impossible. In this regime, we develop a novel algorithm that carefully synthesizes algorithms from the community recovery and graph matching literatures.more » « less
-
M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)The null space of the k-th order Laplacian Lk, known as the {\em k-th homology vector space}, encodes the non-trivial topology of a manifold or a network. Understanding the structure of the homology embedding can thus disclose geometric or topological information from the data. The study of the null space embedding of the graph Laplacian L0 has spurred new research and applications, such as spectral clustering algorithms with theoretical guarantees and estimators of the Stochastic Block Model. In this work, we investigate the geometry of the k-th homology embedding and focus on cases reminiscent of spectral clustering. Namely, we analyze the {\em connected sum} of manifolds as a perturbation to the direct sum of their homology embeddings. We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components. The proposed framework is applied to the {\em shortest homologous loop detection} problem, a problem known to be NP-hard in general. Our spectral loop detection algorithm scales better than existing methods and is effective on diverse data such as point clouds and images.more » « less
-
Summary We propose and prove the optimality of a Bayesian approach for estimating the latent positions in random dot product graphs, which we call posterior spectral embedding. Unlike classical spectral-based adjacency, or Laplacian spectral embedding, posterior spectral embedding is a fully likelihood-based graph estimation method that takes advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax lower bound for estimating the latent positions, and show that posterior spectral embedding achieves this lower bound in the following two senses: it both results in a minimax-optimal posterior contraction rate and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models with positive semidefinite block probability matrices, strengthening an existing result concerning the number of misclustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogue of adjacency spectral embedding, but the resulting posterior contraction rate is suboptimal by an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of Wikipedia graph data.more » « less
-
Abstract Bi-stochastic normalization provides an alternative normalization of graph Laplacians in graph-based data analysis and can be computed efficiently by Sinkhorn–Knopp (SK) iterations. This paper proves the convergence of bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates, when $$n$$ data points are i.i.d. sampled from a general $$d$$-dimensional manifold embedded in a possibly high-dimensional space. Under certain joint limit of $$n \to \infty $$ and kernel bandwidth $$\epsilon \to 0$$, the point-wise convergence rate of the graph Laplacian operator (under 2-norm) is proved to be $$ O( n^{-1/(d/2+3)})$$ at finite large $$n$$ up to log factors, achieved at the scaling of $$\epsilon \sim n^{-1/(d/2+3)} $$. When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency which matches the rate for clean manifold data plus an additional term proportional to the boundedness of the inner-products of the noise vectors among themselves and with data vectors. Motivated by our analysis, which suggests that not exact bi-stochastic normalization but an approximate one will achieve the same consistency rate, we propose an approximate and constrained matrix scaling problem that can be solved by SK iterations with early termination. Numerical experiments support our theoretical results and show the robustness of bi-stochastically normalized graph Laplacian to high-dimensional outlier noise.more » « less
An official website of the United States government

