skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis
ABSTRACT In Anabaena variabilis , the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co 2+ -inducible coaT promoter, activated the expression of both nifB1 and nifB2 . Activation of nifB2 , but not nifB1 , by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2 . Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated the expression of the entire nif2 gene cluster from a nifB2 :: nifB1 :: nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.  more » « less
Award ID(s):
1818298
PAR ID:
10349223
Author(s) / Creator(s):
;
Editor(s):
Elliott, Kathryn T.
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
9
Issue:
2
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atomi, Haruyuki (Ed.)
    ABSTRACT CRISPR-based systems are emerging as the premier method to manipulate many cellular processes. In this study, a simple and efficient CRISPR interference (CRISPRi) system for targeted gene repression in archaea was developed. The Methanosarcina acetivorans CRISPR-Cas9 system was repurposed by replacing Cas9 with the catalytically dead Cas9 (dCas9) to generate a CRISPRi-dCas9 system for targeted gene repression. To test the utility of the system, genes involved in nitrogen (N 2 ) fixation were targeted for dCas9-mediated repression. First, the nif operon ( nifHI 1 I 2 DKEN ) that encodes molybdenum nitrogenase was targeted by separate guide RNAs (gRNAs), one targeting the promoter and the other targeting nifD . Remarkably, growth of M. acetivorans with N 2 was abolished by dCas9-mediated repression of the nif operon with each gRNA. The abundance of nif transcripts was >90% reduced in both strains expressing the gRNAs, and NifD was not detected in cell lysate. Next, we targeted NifB, which is required for nitrogenase cofactor biogenesis. Expression of a gRNA targeting the coding sequence of NifB decreased nifB transcript abundance >85% and impaired but did not abolish growth of M. acetivorans with N 2 . Finally, to ascertain the ability to study gene regulation using CRISPRi-dCas9, nrpR1 , encoding a subunit of the repressor of the nif operon, was targeted. The nrpR1 repression strain grew normally with N 2 but had increased nif operon transcript abundance, consistent with NrpR1 acting as a repressor. These results highlight the utility of the system, whereby a single gRNA when expressed with dCas9 can block transcription of targeted genes and operons in M. acetivorans . IMPORTANCE Genetic tools are needed to understand and manipulate the biology of archaea, which serve critical roles in the biosphere. Methanogenic archaea (methanogens) are essential for the biological production of methane, an intermediate in the global carbon cycle, an important greenhouse gas, and a biofuel. The CRISPRi-dCas9 system in the model methanogen Methanosarcina acetivorans is, to our knowledge, the first Cas9-based CRISPR interference system in archaea. Results demonstrate that the system is remarkably efficient in targeted gene repression and provide new insight into nitrogen fixation by methanogens, the only archaea with nitrogenase. Overall, the CRISPRi-dCas9 system provides a simple, yet powerful, genetic tool to control the expression of target genes and operons in methanogens. 
    more » « less
  2. Youssef, Noha H. (Ed.)
    ABSTRACT Biological nitrogen fixation, the microbial reduction of atmospheric nitrogen to bioavailable ammonia, represents both a major limitation on biological productivity and a highly desirable engineering target for synthetic biology. However, the engineering of nitrogen fixation requires an integrated understanding of how the gene regulatory dynamics of host diazotrophs respond across sequence-function space of its central catalytic metalloenzyme, nitrogenase. Here, we interrogate this relationship by analyzing the transcriptome ofAzotobacter vinelandiiengineered with a phylogenetically inferred ancestral nitrogenase protein variant. The engineered strain exhibits reduced cellular nitrogenase activity but recovers wild-type growth rates following an extended lag period. We find that expression of genes within the immediate nitrogen fixation network is resilient to the introduced nitrogenase sequence-level perturbations. Rather the sustained physiological compatibility with the ancestral nitrogenase variant is accompanied by reduced expression of genes that support trace metal and electron resource allocation to nitrogenase. Our results spotlight gene expression changes in cellular processes adjacent to nitrogen fixation as productive engineering considerations to improve compatibility between remodeled nitrogenase proteins and engineered host diazotrophs. IMPORTANCEAzotobacter vinelandiiis a key model bacterium for the study of biological nitrogen fixation, an important metabolic process catalyzed by nitrogenase enzymes. Here, we demonstrate that compatibilities between engineeredA. vinelandiistrains and nitrogenase variants can be modulated at the regulatory level. The engineered strain studied here responds by adjusting the expression of proteins involved in cellular processes adjacent to nitrogen fixation, rather than that of nitrogenase proteins themselves. These insights can inform future strategies to transfer nitrogenase variants to non-native hosts. 
    more » « less
  3. Summary Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)‐only nitrogenase metalloenzymes. Studies with purified enzymes have found that the ‘alternative’ V‐ and Fe‐nitrogenases generally reduce N2more slowly and produce more byproduct H2than the Mo‐nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotrophRhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V‐nitrogenase supports growth as fast as the Mo‐nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V‐nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V‐nitrogenase on acetate, the wild‐type strain uses exclusively the Mo‐nitrogenase on both carbon substrates. Notably, the differences in H2:N2stoichiometry by alternative nitrogenases (~1.5 for V‐nitrogenase, ~4–7 for Fe‐nitrogenase) and Mo‐nitrogenase (~1) measured here are lower than priorin vitroestimates. These results indicate that the metabolic costs of V‐based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment. 
    more » « less
  4. Gilbert, Jack (Ed.)
    ABSTRACT The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O 2 ) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N 2 fixation and photosynthesis. First, the model indicates that managing cellular O 2 to permit N 2 fixation requires high rates of respiratory O 2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N 2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O 2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N 2 -fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCE Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates an extremely short life span of oxygen-enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis. 
    more » « less
  5. Abstract The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenableCyanothece51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models,Cyanothece51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion ofkaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints. 
    more » « less