skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO 2
Two new Ce IV /O 2− clusters, (pyH) 8 [Ce 10 O 4 (OH) 4 (O 3 PPh) 12 (NO 3 ) 12 ] (1) and [Ce 6 O 4 (OH) 4 (O 2 PPh 2 ) 4 (O 2 C t Bu) 8 ] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH 4 ) 2 [Ce(NO 3 ) 6 ], PhPO 3 H 2 or Ph 2 PO 2 H, and t BuCO 2 H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce 6 O 4 (OH) 4 } face-capped octahedral core, with 1 containing an additional four Ce IV on the outside to give a supertetrahedral Ce 10 topology; the {Ce 6 O 8 } unit is the smallest recognizable fragment of the fluorite structure of CeO 2 . The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce 24 and Ce 38 molecular nanoparticles of CeO 2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce 24 and Ce 38 , a result that is consistent with reports in the literature that PO 4 3− ions inhibit the radical scavenging ability of traditional CeO 2 nanoparticles and putatively assigned to PO 4 3− binding to the surface.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
Page Range / eLocation ID:
15524 to 15532
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reactions of thioformaldehyde (H 2 CS) with OH radicals and assisted by a single water molecule have been investigated using high level ab initio quantum chemistry calculations. The H 2 CS + ˙OH reaction can in principle proceed through: (1) abstraction, and (2) addition pathways. The barrier height for the addition reaction in the absence of a catalyst was found to be −0.8 kcal mol −1 , relative to the separated reactants, which has a ∼1.0 kcal mol −1 lower barrier than the abstraction channel. The H 2 CS + ˙OH reaction assisted by a single water molecule reduces the barrier heights significantly for both the addition and abstraction channels, to −5.5 and −6.7 kcal mol −1 respectively, compared to the un-catalyzed H 2 CS + ˙OH reaction. These values suggest that water lowers the barriers by ∼6.0 kcal mol −1 for both reaction paths. The rate constants for the H 2 CS⋯H 2 O + ˙OH and OH⋯H 2 O + H 2 CS bimolecular reaction channels were calculated using Canonical Variational Transition state theory (CVT) in conjunction with the Small Curvature Tunneling (SCT) method over the atmospherically relevant temperatures between 200 and 400 K. Rate constants for the H 2 CS + ˙OH reaction paths for comparison with the H 2 CS + ˙OH + H 2 O reaction in the same temperature range were also computed. The results suggest that the rate of the H 2 CS + ˙OH + H 2 O reaction is slower than that of the H 2 CS + ˙OH reaction by ∼1–4 orders of magnitude in the temperatures between 200 and 400 K. For example, at 300 K, the rates of the H 2 CS + ˙OH + H 2 O and H 2 CS + ˙OH reactions were found to be 2.2 × 10 −8 s −1 and 6.4 × 10 −6 s −1 , respectively, calculated using [OH] = 1.0 × 10 6 molecules cm −3 , and [H 2 O] = 8.2 × 10 17 molecules cm −3 (300 K, RH 100%) atmospheric conditions. Electronic structure calculations on the H 2 C(OH)S˙ product in the presence of 3 O 2 were also performed. The results show that H 2 CS is removed from the atmosphere primarily by reacting with ˙OH and O 2 to form thioformic acid, HO 2 , formaldehyde, and SO 2 as the main end products. 
    more » « less
  2. Recently, over 200 molecules have been detected in the interstellar medium (ISM), with about one third being complex organic molecules (COMs), molecules containing six or more atoms. Over the last few decades, astrophysical laboratory experiments have shown that several COMs are formed via interaction of ionizing radiation within ices deposited on interstellar dust particles at 10 K (H 2 O, CH 3 OH, CO, CO 2 , CH 4 , NH 3 ). However, there is still a lack of understanding of the chemical complexity that is available through individual ice constituents. The present research investigates experimentally the synthesis of carbon, hydrogen, and oxygen bearing COMs from interstellar ice analogues containing carbon monoxide (CO) and methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), or acetylene (C 2 H 2 ) exposed to ionizing radiation. Utilizing online and in situ techniques, such as infrared spectroscopy and tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), specific isomers produced could be characterized. A total of 12 chemically different groups were detected corresponding to C 2 H n O ( n = 2, 4, 6), C 3 H n O ( n = 2, 4, 6, 8), C 4 H n O ( n = 4, 6, 8, 10), C 5 H n O ( n = 4, 6, 8, 10), C 6 H n O ( n = 4, 6, 8, 10, 12, 14), C 2 H n O 2 ( n = 2, 4), C 3 H n O 2 ( n = 4, 6, 8), C 4 H n O 2 ( n = 4, 6, 8, 10), C 5 H n O 2 ( n = 6, 8), C 6 H n O 2 ( n = 8, 10, 12), C 4 H n O 3 ( n = 4, 6, 8), and C 5 H n O 3 ( n = 6, 8). More than half of these isomer specifically identified molecules have been identified in the ISM, and the remaining COMs detected here can be utilized to guide future astronomical observations. Of these isomers, three groups – alcohols, aldehydes, and molecules containing two of these functional groups – displayed varying degrees of unsaturation. Also, the detection of 1-propanol, 2-propanol, 1-butanal, and 2-methyl-propanal has significant implications as the propyl and isopropyl moieties (C 3 H 7 ), which have already been detected in the ISM via propyl cyanide and isopropyl cyanide, could be detected in our laboratory studies. General reaction mechanisms for their formation are also proposed, with distinct follow-up studies being imperative to elucidate the complexity of COMs synthesized in these ices. 
    more » « less
  3. null (Ed.)
    The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. 
    more » « less
  4. null (Ed.)
    Bio-derived isobutanol has been approved as a gasoline additive in the US, but our understanding of its combustion chemistry still has significant uncertainties. Detailed quantum calculations could improve model accuracy leading to better estimation of isobutanol's combustion properties and its environmental impacts. This work examines 47 molecules and 38 reactions involved in the first oxygen addition to isobutanol's three alkyl radicals located α, β, and γ to the hydroxide. Quantum calculations are mostly done at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/CBSB7, with 1-D hindered rotor corrections obtained at B3LYP/6-31G(d). The resulting potential energy surfaces are the most comprehensive isobutanol peroxy networks published to date. Canonical transition state theory and a 1-D microcanonical master equation are used to derive high-pressure-limit and pressure-dependent rate coefficients, respectively. At all conditions studied, the recombination of γ-isobutanol radical with O 2 forms HO 2 + isobutanal. The recombination of β-isobutanol radical with O 2 forms a stabilized hydroperoxy alkyl radical below 400 K, water + an alkoxy radical at higher temperatures, and HO 2 + an alkene above 1200 K. The recombination of β-isobutanol radical with O 2 results in a mixture of products between 700–1100 K, forming acetone + formaldehyde + OH at lower temperatures and forming HO 2 + alkenes at higher temperatures. The barrier heights, high-pressure-limit rates, and pressure-dependent kinetics generally agree with the results from previous quantum chemistry calculations. Six reaction rates in this work deviate by over three orders of magnitude from kinetics in detailed models of isobutanol combustion, suggesting the rates calculated here can help improve modeling of isobutanol combustion and its environmental fate. 
    more » « less
  5. After release into the aquatic environment, engineered nanomaterials (ENMs) undergo complex chemical and physical transformations that alter their environmental fate and toxicity to aquatic organisms. Hyalella azteca are sediment-dwelling amphipods predicted to have a high exposure level to ENMs and have previously shown to be highly sensitive to ZnO nanoparticles (NPs). To investigate the impacts of environmentally transformed ZnO NPs and determine the route of uptake for these particles, we exposed H. azteca to ZnSO 4 , ZnO NPs, and environmental aged ZnO NPs which resulted in three types of particles: 30 nm ZnO–Zn 3 (PO 4 ) 2 core–shell structures (p8-ZnO NPs), micron scale hopeite-like phase Zn 3 (PO 4 ) 2 ·4H 2 O (p6-ZnO NPs), and ZnS nano-clusters (s-ZnO NPs). Treatments included freshwater, saltwater (3 ppt), and the presence of sediment, with a final treatment where animals were contained within mesh baskets to prevent burrowing in the sediment. Dissolution was close to 100% for the pristine ZnO NPs and phosphate transformed NPs, while s-ZnO NPs resulted in only 20% dissolution in the water only exposures. In the freshwater exposure, the pristine and phosphate transformed ZnO NPs were more toxic (LC 50 values 0.11–0.18 mg L −1 ) than ZnSO 4 (LC 50 = 0.26 mg L −1 ) and the s-ZnO NPs (LC 50 = 0.29 mg L −1 ). Saltwater treatments reduced the toxicity of ZnSO 4 and all the ZnO NPs. In the presence of sediment, water column concentrations of Zn were reduced to 10% nominal concentrations and toxicity in the sediment with basket treatment was similarly reduced by a factor of 10. Toxicity was further reduced in the sediment only treatments where the sediments appeared to provide a refuge for H. azteca . In addition, particle specific differences in toxicity were less apparent in the presence of sediment. Bioaccumulation was similar across the different Zn exposures, but decreased with reduced toxicity in the saltwater and sediment treatments. Overall, the results suggest that H. azteca is exposed to ZnO NPs through the water column and NP transformations in the presence of phosphate do not reduce their toxicity. Sulfidized ZnO NPs have reduced toxicity, but their similar level of bioaccumulation in H. azteca suggests that trophic transfer of these particles will occur. 
    more » « less