Abstract Ultra‐small nanoparticles of CeO2obtained in molecular form, so‐called molecular nanoparticles, have been limited to date to a family whose largest member is of nuclearity Ce40with a {Ce40O58} core atom count. Herein we report that a synthetic procedure has been developed to the cation [Ce100O149(OH)18(O2CPh)60(PhCO2H)12(H2O)20]16+, a member with a much higher Ce100nuclearity and a {Ce100O167} core that is more akin to the smallest ceria nanoparticles. Its crystal structure reveals it to possess a 2.4 nm size and high D2dsymmetry, and it has also allowed identification of core surface features including facet composition, the presence and location of Ce3+and H+(i.e. HO−) ions, and the binding modes of the ligand monolayer of benzoate, benzoic acid, and water ligands.
more »
« less
Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO 2
Two new Ce IV /O 2− clusters, (pyH) 8 [Ce 10 O 4 (OH) 4 (O 3 PPh) 12 (NO 3 ) 12 ] (1) and [Ce 6 O 4 (OH) 4 (O 2 PPh 2 ) 4 (O 2 C t Bu) 8 ] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH 4 ) 2 [Ce(NO 3 ) 6 ], PhPO 3 H 2 or Ph 2 PO 2 H, and t BuCO 2 H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce 6 O 4 (OH) 4 } face-capped octahedral core, with 1 containing an additional four Ce IV on the outside to give a supertetrahedral Ce 10 topology; the {Ce 6 O 8 } unit is the smallest recognizable fragment of the fluorite structure of CeO 2 . The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce 24 and Ce 38 molecular nanoparticles of CeO 2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce 24 and Ce 38 , a result that is consistent with reports in the literature that PO 4 3− ions inhibit the radical scavenging ability of traditional CeO 2 nanoparticles and putatively assigned to PO 4 3− binding to the surface.
more »
« less
- Award ID(s):
- 1900321
- PAR ID:
- 10349326
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 43
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 15524 to 15532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ultra‐small nanoparticles of CeO2obtained in molecular form, so‐called molecular nanoparticles, have been limited to date to a family whose largest member is of nuclearity Ce40with a {Ce40O58} core atom count. Herein we report that a synthetic procedure has been developed to the cation [Ce100O149(OH)18(O2CPh)60(PhCO2H)12(H2O)20]16+, a member with a much higher Ce100nuclearity and a {Ce100O167} core that is more akin to the smallest ceria nanoparticles. Its crystal structure reveals it to possess a 2.4 nm size and high D2dsymmetry, and it has also allowed identification of core surface features including facet composition, the presence and location of Ce3+and H+(i.e. HO−) ions, and the binding modes of the ligand monolayer of benzoate, benzoic acid, and water ligands.more » « less
-
The reactions of thioformaldehyde (H 2 CS) with OH radicals and assisted by a single water molecule have been investigated using high level ab initio quantum chemistry calculations. The H 2 CS + ˙OH reaction can in principle proceed through: (1) abstraction, and (2) addition pathways. The barrier height for the addition reaction in the absence of a catalyst was found to be −0.8 kcal mol −1 , relative to the separated reactants, which has a ∼1.0 kcal mol −1 lower barrier than the abstraction channel. The H 2 CS + ˙OH reaction assisted by a single water molecule reduces the barrier heights significantly for both the addition and abstraction channels, to −5.5 and −6.7 kcal mol −1 respectively, compared to the un-catalyzed H 2 CS + ˙OH reaction. These values suggest that water lowers the barriers by ∼6.0 kcal mol −1 for both reaction paths. The rate constants for the H 2 CS⋯H 2 O + ˙OH and OH⋯H 2 O + H 2 CS bimolecular reaction channels were calculated using Canonical Variational Transition state theory (CVT) in conjunction with the Small Curvature Tunneling (SCT) method over the atmospherically relevant temperatures between 200 and 400 K. Rate constants for the H 2 CS + ˙OH reaction paths for comparison with the H 2 CS + ˙OH + H 2 O reaction in the same temperature range were also computed. The results suggest that the rate of the H 2 CS + ˙OH + H 2 O reaction is slower than that of the H 2 CS + ˙OH reaction by ∼1–4 orders of magnitude in the temperatures between 200 and 400 K. For example, at 300 K, the rates of the H 2 CS + ˙OH + H 2 O and H 2 CS + ˙OH reactions were found to be 2.2 × 10 −8 s −1 and 6.4 × 10 −6 s −1 , respectively, calculated using [OH] = 1.0 × 10 6 molecules cm −3 , and [H 2 O] = 8.2 × 10 17 molecules cm −3 (300 K, RH 100%) atmospheric conditions. Electronic structure calculations on the H 2 C(OH)S˙ product in the presence of 3 O 2 were also performed. The results show that H 2 CS is removed from the atmosphere primarily by reacting with ˙OH and O 2 to form thioformic acid, HO 2 , formaldehyde, and SO 2 as the main end products.more » « less
-
null (Ed.)The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry.more » « less
-
In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability.more » « less