skip to main content


Title: Design of nanoconstructs that exhibit enhanced hemostatic efficiency and bioabsorbability
Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable ( i.e. , degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions.  more » « less
Award ID(s):
2003771 1905818
NSF-PAR ID:
10349353
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
14
Issue:
30
ISSN:
2040-3364
Page Range / eLocation ID:
10738 to 10749
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand Factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. Additionally, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis. 
    more » « less
  2. Uncontrolled bleeding is a major problem in trauma and emergency medicine. While materials for trauma applications would certainly find utility in traditional surgical settings, the unique environment of emergency medicine introduces additional design considerations, including the need for materials that are easily deployed in austere environments. Ideally, these materials would be available off the shelf, could be easily transported, and would be able to be stored at room temperature for some amount of time. Both natural and synthetic materials have been explored for the development of hemostatic materials. This review article provides an overview of classes of materials used for topical hemostats and newer developments in the area of injectable hemostats for use in emergency medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract

    Naturally occurring internal bleeding, such as in stomach ulcers, and complications following interventions, such as polyp resection post‐colonoscopy, may result in delayed (5–7 days) post‐operative adverse events—such as bleeding, intestinal wall perforation, and leakage. Current solutions for controlling intra‐ and post‐procedural complications are limited in effectiveness. Hemostatic powders only provide a temporary solution due to their short‐term adhesion to GI mucosal tissues (less than 48 h). In this study, a sprayable adhesive hydrogel for facile application and sustained adhesion to GI lesions is developed using clinically available endoscopes. Upon spraying, the biomaterial (based on polyethyleneimine‐modified Pluronic micelles precursor and oxidized dextran) instantly gels upon contact with the tissue, forming an adhesive shield. In vitro and in vivo studies in guinea pigs, rabbits, and pig models confirm the safety and efficacy of this biomaterial in colonic and acidic stomach lesions. The authors' findings highlight that this family of hydrogels ensures prolonged tissue protection (3–7 days), facilitates wound healing, and minimizes the risk of delayed complications. Overall, this technology offers a readily adoptable approach for gastrointestinal wound management.

     
    more » « less
  4. Abstract

    Tracheal stenting currently using non‐degradable stents is commonplace for treatment of trauma, prolonged intubation related adult airway obstructions, and pediatric patients‐associated tracheal stenosis conditions. Degradable tracheal stent placement will avoid complications of stent removal and restenosis. Widespread reports exist on degradable magnesium alloys success for orthopedic and cardiovascular applications but none to date for intra tracheal use. This research explores the use of pure Mg, AZ31, and Mg‐3Y alloys for degradable tracheal stent assessment.In vitroevaluation of magnesium, prototype stents in a bioreactor simulate the airway environment and corrosion. Micro‐CT imaging and biocompatibility evaluation helped assess the 24‐week degradation of intraluminal alloy stents following implantation in a rat trachealin vivobypass model. Histological analysis indicate tissue response of the harvested stented trachea segments after each time point. Corrosion studies for each alloy indicate significant differences between the simulated and controlin vitroconditions. AZ31 exhibited the lowest volume loss of 6.8% in saline, while pure Mg displayed the lowest volume loss of 4.6% in simulated airway fluid (SAF), both at 1‐week time points. Significant differences in percentage of total volume lost after 6 months were determined between the alloys over time. MgY alloy displayed the slowest corrosion losing only 15.1% volume after 24 weeks of immersion. Additionally,in vitromagnesium alloy corrosion was not significantly different from the percentage of total volume lostin vivoat 1‐week time point. The study demonstrates promise of magnesium alloys for intraluminal tracheal stent application albeit viability of a clinically translatable model warrants further studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1844–1853, 2019.

     
    more » « less
  5. Mid-chain degradable polymers can be prepared by atom transfer radical polymerization from difunctional initiators that include triggers for the desired stimuli. While many difunctional initiators can respond to reducing conditions, procedures to prepare difunctional initiators that respond to oxidizing conditions are significantly less available in the literature. Here, a difunctional initiator incorporating an oxidizable boronic ester trigger was synthesized over four steps using simple and scalable procedures. Methyl methacrylate was polymerized by atom transfer radical polymerization using this initiator, and the polymerization kinetics were consistent with a controlled polymerization. The polymer synthesized using the difunctional initiator was found to decrease in molecular weight by 58% in the presence of hydrogen peroxide, while a control experiment using poly(methyl methacrylate) without a degradable linkage showed a much smaller decrease in molecular weight of only 9%. These observed molecular weight decreases were consistent with cleavage of the difunctional initiator via a quinone methide shift and hydrolysis of the methyl ester pendent groups in both polymers, and both polymers increased in polydispersity after oxidative degradation. 
    more » « less