skip to main content


Title: A Manifold Proximal Linear Method for Sparse Spectral Clustering with Application to Single-Cell RNA Sequencing Data Analysis
Spectral clustering is one of the fundamental unsupervised learning methods and is widely used in data analysis. Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering, and it improves the interpretability of the model. One widely adopted model for SSC in the literature is an optimization problem over the Stiefel manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth objective using certain smoothing techniques. Therefore, they were not targeting solving the original formulation of SSC. In this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation without twisting the model. We also extend the algorithm to solve multiple-kernel SSC problems, for which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the proposed methods are established. We demonstrate the advantage of our proposed methods over existing methods via clustering of several data sets, including University of California Irvine and single-cell RNA sequencing data sets.  more » « less
Award ID(s):
1934568 1953189 2007823
PAR ID:
10349405
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
INFORMS Journal on Optimization
Volume:
4
Issue:
2
ISSN:
2575-1484
Page Range / eLocation ID:
200 to 214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an ϵ -stationary point with O(ϵ−3) IFOs in the online case, and O(n+n‾√ϵ−2) IFOs in the finite-sum case with n being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that use Riemannian subgradient information. 
    more » « less
  2. We consider the problem of subspace clustering with data that is potentially corrupted by both dense noise and sparse gross errors. In particular, we study a recently proposed low rank subspace clustering approach based on a nonconvex modeling formulation. This formulation includes a nonconvex spectral function in the objective function that makes the optimization task challenging, e.g., it is unknown whether the alternating direction method of multipliers (ADMM) framework proposed to solve the nonconvex model formulation is provably convergent. In this paper, we establish that the spectral function is differentiable and give a formula for computing the derivative. Moreover, we show that the derivative of the spectral function is Lipschitz continuous and provide an explicit value for the Lipschitz constant. These facts are then used to provide a lower bound for how the penalty parameter in the ADMM method should be chosen. As long as the penalty parameter is chosen according to this bound, we show that the ADMM algorithm computes iterates that have a limit point satisfying first-order optimality conditions. We also present a second strategy for solving the nonconvex problem that is based on proximal gradient calculations. The convergence and performance of the algorithms is verified through experiments on real data from face and digit clustering and motion segmentation. 
    more » « less
  3. This paper addresses the user-centric clustering and pilot assignment problems in cell-free networks, recognizing the need to solve both problems simultaneously. The motivation of this research stems from the absence of benchmarks, general formulations, and the reliance on subjectively designed objective functions and heuristic algorithms prevalent in existing literature. To tackle these challenges, we formulate stochastic non-linear binary integer programs for both the user-centric clustering and pilot assignment problems. We specifically design the pilot assignment formulation to incorporate user-centric clusters when evaluating the desirability of pilot assignments, resulting in improved efficiency. To solve the problems, the proposed methodology employs sample average approximation coupled with surrogate optimization for the user-centric clustering problem and the genetic algorithm for the pilot assignment problem. Numerical experiments demonstrate that the optimized solutions outperform baseline solutions, leading to significant gains in spectral efficiency. 
    more » « less
  4. Different to traditional clustering methods that deal with one single type of data, High-Order Co- Clustering (HOCC) aims to cluster multiple types of data simultaneously by utilizing the inter- or/and intra-type relationships across different data types. In existing HOCC methods, data points routinely enter the objective functions with squared residual errors. As a result, outlying data samples can dominate the objective functions, which may lead to incorrect clustering results. Moreover, existing methods usually suffer from soft clustering, where the probabilities to different groups can be very close. In this paper, we propose an L1 -norm symmetric nonnegative matrix tri-factorization method to solve the HOCC problem. Due to the orthogonal constraints and the symmetric L1 -norm formulation in our new objective, conventional auxiliary function approach no longer works. Thus we derive the solution algorithm using the alternating direction method of multipliers. Extensive experiments have been conducted on a real world data set, in which promising empirical results, including less time consumption, strictly orthogonal membership matrix, lower local minima etc., have demonstrated the effectiveness of our proposed method.

     
    more » « less
  5. Laplacian Embedding (LE) is a powerful method to reveal the intrinsic geometry of high-dimensional data by using graphs. Imposing the orthogonal and nonnegative constraints onto the LE objective has proved to be effective to avoid degenerate and negative solutions, which, though, are challenging to achieve simultaneously because they are nonlinear and nonconvex. In addition, recent studies have shown that using the p-th order of the L2-norm distances in LE can find the best solution for clustering and promote the robustness of the embedding model against outliers, although this makes the optimization objective nonsmooth and difficult to efficiently solve in general. In this work, we study LE that uses the p-th order of the L2-norm distances and satisfies both orthogonal and nonnegative constraints. We introduce a novel smoothed iterative reweighted method to tackle this challenging optimization problem and rigorously analyze its convergence. We demonstrate the effectiveness and potential of our proposed method by extensive empirical studies on both synthetic and real data sets.

     
    more » « less