skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes
Abstract We present a machine learning framework to automate knowledge discovery through knowledge graph construction, inconsistency resolution, and iterative link prediction. By incorporating knowledge from 10 publicly available sources, we construct an Escherichia coli antibiotic resistance knowledge graph with 651,758 triples from 23 triple types after resolving 236 sets of inconsistencies. Iteratively applying link prediction to this graph and wet-lab validation of the generated hypotheses reveal 15 antibiotic resistant E. coli genes, with 6 of them never associated with antibiotic resistance for any microbe. Iterative link prediction leads to a performance improvement and more findings. The probability of positive findings highly correlates with experimentally validated findings ( R 2  = 0.94). We also identify 5 homologs in Salmonella enterica that are all validated to confer resistance to antibiotics. This work demonstrates how evidence-driven decisions are a step toward automating knowledge discovery with high confidence and accelerated pace, thereby substituting traditional time-consuming and expensive methods.  more » « less
Award ID(s):
1934568
PAR ID:
10349465
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Antibiotic resistance is a growing health concern. Efforts to control resistance would benefit from an improved ability to forecast when and how it will evolve. Epistatic interactions between mutations can promote divergent evolutionary trajectories, which complicates our ability to predict evolution. We recently showed that differences between genetic backgrounds can lead to idiosyncratic responses in the evolvability of phenotypic resistance, even among closely relatedEscherichia colistrains. In this study, we examined whether a strain's genetic background also influences the genotypic evolution of resistance. Do lineages founded by different genotypes take parallel or divergent mutational paths to achieve their evolved resistance states? We addressed this question by sequencing the complete genomes of antibiotic-resistant clones that evolved from several different genetic starting points during our earlier experiments. We first validated our statistical approach by quantifying the specificity of genomic evolution with respect to antibiotic treatment. As expected, mutations in particular genes were strongly associated with each drug. Then, we determined that replicate lines evolved from the same founding genotypes had more parallel mutations at the gene level than lines evolved from different founding genotypes, although these effects were more subtle than those showing antibiotic specificity. Taken together with our previous work, we conclude that historical contingency can alter both genotypic and phenotypic pathways to antibiotic resistance. 
    more » « less
  2. Beard, Daniel A (Ed.)
    Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such asEscherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in “whole-cell” modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the “whole-colony” scale, we embedded multiple instances of a whole-cellE.colimodel within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response ofE.colito two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival. 
    more » « less
  3. Zhang, Xue (Ed.)
    ABSTRACT Bacterial growth and metabolic rates are often closely related. However, under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy decreases when bacteria are metabolically dormant, yet antibiotics select for resistant cells that grow fastest during treatment. That is, antibiotic selection counterintuitively favors bacteria with fast growth but slow metabolism. Despite this apparent contradiction, antibiotic resistant cells have historically been characterized primarily in the context of growth, whereas the extent of analogous changes in metabolism is comparatively unknown. Here, we observed that previously evolved antibiotic-resistant strains exhibited a unique relationship between growth and metabolism whereby nutrient utilization became more efficient, regardless of the growth rate. To better understand this unexpected phenomenon, we used a simplified model to simulate bacterial populations adapting to sub-inhibitory antibiotic selection through successive bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic concentrations could select for enhanced metabolic efficiency, defined based on nutrient utilization: drug-adapted cells are able to achieve the same biomass while utilizing less substrate, even in the absence of treatment. Moreover, simulations predicted that restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-dependent resistance; we confirmed this result using adaptive laboratory evolutions ofEscherichia coliunder carbenicillin treatment. Overall, these results indicate that metabolic efficiency is under direct selective pressure during antibiotic treatment and that differences in evolutionary context may determine both the efficacy of different antibiotics and corresponding re-sensitization approaches. IMPORTANCEThe sustained emergence of antibiotic-resistant pathogens combined with the stalled drug discovery pipelines highlights the critical need to better understand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial growth and metabolic rates are often closely related, and resistant cells have historically been characterized exclusively in the context of growth. However, under antibiotic selection, antibiotics counterintuitively favor cells with fast growth, and slow metabolism. Through an integrated approach of mathematical modeling and experiments, this study thereby addresses the significant knowledge gap of whether antibiotic selection drives changes in metabolism that complement, and/or act independently, of antibiotic resistance phenotypes. 
    more » « less
  4. Antibiotic resistance (AR) presents a global health challenge, necessitating an improved understanding of the ecology, evolution, and dissemination of antibiotic resistance genes (ARGs). Several tools, databases, and algorithms are now available to facilitate the identification of ARGs in metagenomic sequencing data; however, direct annotation of short-read data provides limited contextual information. Knowledge of whether an ARG is carried in the chromosome or on a specific mobile genetic element (MGE) is critical to understanding mobility, persistence, and potential for co-selection. Here we developed ARGContextProfiler, a pipeline designed to extract and visualize ARG genomic contexts. By leveraging the assembly graph for genomic neighborhood extraction and validating contexts through read mapping, ARGContextProfiler minimizes chimeric errors that are a common artifact of assembly outputs. Testing on real, synthetic, and semi-synthetic data, including long-read sequencing data from environmental samples, demonstrated that ARGContextProfiler offers superior accuracy, precision, and sensitivity compared to conventional assembly-based methods. ARGContextProfiler thus provides a powerful tool for uncovering the genomic context of ARGs in metagenomic sequencing data, which can be of value to both fundamental and applied research aimed at understanding and stemming the spread of AR. The source code of ARGContextProfiler is publicly available atGitHub. 
    more » « less
  5. Existing causal models for link prediction assume an underlying set of inherent node factors—an innate characteristic defined at the node’s birth—that governs the causal evolution of links in the graph. In some causal tasks, however, link formation ispath-dependent: the outcome of link interventions depends on existing links. Unfortunately, these existing causal methods are not designed for path-dependent link formation, as the cascading functional dependencies between links (arising frompath dependence) are either unidentifiable or require an impractical number of control variables. To overcome this, we develop the first causal model capable of dealing with path dependencies in link prediction. In this work, we introduce the concept of causal lifting, an invariance in causal models of independent interest that, on graphs, allows the identification of causal link prediction queries using limited interventional data. Further, we show how structural pairwise embeddings exhibit lower bias and correctly represent the task’s causal structure, as opposed to existing node embeddings, e.g. graph neural network node embeddings and matrix factorization. Finally, we validate our theoretical findings on three scenarios for causal link prediction tasks: knowledge base completion, covariance matrix estimation and consumer-product recommendations. 
    more » « less