In the audio modality, state-of-the-art watermarking methods leverage deep neural networks to allow the embedding of human-imperceptible signatures in generated audio. The ideal is to embed signatures that can be detected with highaccuracy when the watermarked audio is altered via compression, filtering, or other transformations. Existing audio watermarking techniques operate in a post-hoc manner, manipulating “low-level” features of audio recordings after generation (e.g. through the addition of a low-magnitude watermark signal). We show that this post-hoc formulation makes existing audio watermarks vulnerable to transformation-based removal attacks. Focusing on speech audio, we (1) unify and extend existing evaluations of the effect of audio transformations on watermark detectability, and (2) demonstrate that state-of-the-art post-hoc audio watermarks can be removed with no knowledge of the watermarking scheme and minimal degradation in audio quality
more »
« less
Attributable Watermarking of Speech Generative Models
Generative models are now capable of synthesizing images, speeches, and videos that are hardly distinguishable from authentic contents. Such capabilities cause concerns such as malicious impersonation and IP theft. This paper investigates a solution for model attribution, i.e., the classification of synthetic contents by their source models via watermarks embedded in the contents. Building on past success of model attribution in the image domain, we discuss algorithmic improvements for generating user-end speech models that empirically achieve high attribution accuracy, while maintaining high generation quality. We show the tradeoff between attributability and generation quality under a variety of attacks on generated speech signals attempting to remove the watermarks, and the feasibility of learning robust watermarks against these attacks.
more »
« less
- Award ID(s):
- 2101052
- PAR ID:
- 10349551
- Date Published:
- Journal Name:
- Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing
- ISSN:
- 2379-190X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Growing applications of generative models have led to new threats such as malicious personation and digital copyright infringement. One solution to these threats is model attribution, i.e., the identification of user-end models where the contents under question are generated. Existing studies showed empirical feasibility of attribution through a centralized classifier trained on all existing user-end models. However, this approach is not scalable in a reality where the number of models ever grows. Neither does it provide an attributability guarantee. To this end, this paper studies decentralized attribution, which relies on binary classifiers associated with each user-end model. Each binary classifier is parameterized by a user-specific key and distinguishes its associated model distribution from the authentic data distribution. We develop sufficient conditions of the keys that guarantee an attributability lower bound. Our method is validated on MNIST, CelebA, and FFHQ datasets. We also examine the trade-off between generation quality and robustness of attribution against adversarial post-processes.more » « less
-
Growing applications of generative models have led to new threats such as malicious personation and digital copyright infringement. One solution to these threats is model attribution, i.e., the identification of user-end models where the contents under question are generated from. Existing studies showed empirical feasibility of attribution through a centralized classifier trained on all user-end models. However, this approach is not scalable in reality as the number of models ever grows. Neither does it provide an attributability guarantee. To this end, this paper studies decentralized attribution, which relies on binary classifiers associated with each user-end model. Each binary classifier is parameterized by a user-specific key and distinguishes its associated model distribution from the authentic data distribution. We develop sufficient conditions of the keys that guarantee an attributability lower bound. Our method is validated on MNIST, CelebA, and FFHQ datasets. We also examine the trade-off between generation quality and robustness of attribution against adversarial post-processes.more » « less
-
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.more » « less
-
We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit.more » « less
An official website of the United States government

