skip to main content

Title: Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework
Metal–organic frameworks (MOFs) containing open metal sites are advantageous for wide applications. Here, carboxylate linkers are replaced with triazolate coordination in pre-formed Zn-MOF-74 via solvent-assisted linker exchange (SALE) to prepare the novel NU-250, within the known hexagonal channel-based MAF-X25 series that has not previously been synthesized de novo .  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Page Range / eLocation ID:
4028 to 4031
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study addresses the limitations of cross weld tensile testing (CWTT) in quantifying local mechanical properties across microstructural and compositional gradients in dissimilar– and matching–filler metal welds. A digital image correlation (DIC) methodology was validated for application in CWTT by direct comparison of stress-strain curves generated using conventional and virtual DIC extensometers in tensile testing of homogeneous steel samples. DIC-instrumented CWTT of dissimilar weld metal Alloy 625 filler metal on F65 steel demonstrated capability in quantifying the local yield strength, strain-hardening kinetics, and strain at failure in the base metal, heat-affected zone (HAZ), fusion boundary (FB) region, and weld metal in dissimilar and matching filler metal welds. It was shown that the high strain-hardening capacity in Alloy 625 weld metal led to base metal failure in CWTT despite the lower Alloy 625 weld metal yield strength. It was also shown that DIC-instrumented CWTT can be used for determining weld metal undermatching and overmatching conditions in compositionally matching- and dissimilar-metal welds. Furthermore, by quantifying local strain distribution (both elastic and plastic) in the HAZ, FB region, and weld metal, DIC-instrumented CWTT provides an additional method for evaluating hydrogen-assisted cracking susceptibility in dissimilar-metal welds.

    more » « less

    Karavannoe is a pallasite found in Russia in 2010. The mineralogy, chemistry, and oxygen isotopic composition indicate that Karavannoe is a member of the Eagle Station Pallasite (ESP) group. Karavannoe contains mostly olivine and subdued interstitial Fe,Ni‐metal. Zoned distribution of FeO in small, rounded grains of olivine and FeO and Al2O3in chromite shows that the cooling rate of the melt was fast during the crystallization of the round olivine grains. Siderophile element distribution and correlations of Au‐As and Os‐Ir concentrations in Karavannoe and the other ESP metal record its magmatic origin. FeO‐rich composition of olivine, low W and Ga, and high Ni abundances in the Karavannoe metal indicate the formation of the metal from an oxidized chondrite precursor. Model calculations demonstrate that the ESPs’ metal compositions correspond to the solids of the fractional crystallization of CV‐ or CO‐chondrite‐derived metallic liquids. The Karavannoe metal composition corresponds to the solid fraction crystallized after ~40% fractional crystallization. The Mg/(Mg+Fe) atom ratio of complementary silicate liquid corresponds to Fo70, possibly indicating that the olivine is not in equilibrium with the metal and could have been a product of the late evolutionary processes in the Karavannoe parent body mantle. In any ESP genesis Karavannoe was not in equilibrium with its metal and is a product of mantle differentiation processes. Olivine of Karavannoe and ESPs is similar in composition, while the metal is different. We propose a model of ESP formation involving an impact‐induced intrusion of liquid core metal into a basal mantle layer, followed by fractional crystallization of the metal. The metal textures and chemical zoning of Karavannoe minerals point to remelting and rapid cooling due to a later impact event.

    more » « less
  3. Abstract Motivation

    metal-binding proteins have a central role in maintaining life processes. Nearly one-third of known protein structures contain metal ions that are used for a variety of needs, such as catalysis, DNA/RNA binding, protein structure stability, etc. Identifying metal-binding proteins is thus crucial for understanding the mechanisms of cellular activity. However, experimental annotation of protein metal-binding potential is severely lacking, while computational techniques are often imprecise and of limited applicability.


    we developed a novel machine learning-based method, mebipred, for identifying metal-binding proteins from sequence-derived features. This method is over 80% accurate in recognizing proteins that bind metal ion-containing ligands; the specific identity of 11 ubiquitously present metal ions can also be annotated. mebipred is reference-free, i.e. no sequence alignments are involved, and is thus faster than alignment-based methods; it is also more accurate than other sequence-based prediction methods. Additionally, mebipred can identify protein metal-binding capabilities from short sequence stretches, e.g. translated sequencing reads, and, thus, may be useful for the annotation of metal requirements of metagenomic samples. We performed an analysis of available microbiome data and found that ocean, hot spring sediments and soil microbiomes use a more diverse set of metals than human host-related ones. For human microbiomes, physiological conditions explain the observed metal preferences. Similarly, subtle changes in ocean sample ion concentration affect the abundance of relevant metal-binding proteins. These results highlight mebipred’s utility in analyzing microbiome metal requirements.

    Availability and implementation

    mebipred is available as a web server at and as a standalone package at

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    more » « less
  4. Developing a materials perspective of how to control the degradation and negative impact of complex metal oxides requires an integrated understanding of how these nanomaterials transform in the environment and interact with biological systems. Doping with aluminum is known to stabilize oxide materials, but has not been assessed cohesively from synthesis to environmental fate and biological impact. In the present study, the influence of aluminum doping on metal ion release from transition metal oxides was investigated by comparing aqueous transformations of lithium nickel cobalt aluminum oxide (LiNi0.82Co0.15Al0.03O2; NCA) and lithium nickel cobalt oxide (LiNi0.80Co0.20O2; NC) nanoparticles and by calculating the energetics of metal release using a density functional theory (DFT) and thermodynamics method. Two model environmental organisms were used to assess biological impact, and metal ion release was compared for NCA and NC nanoparticles incubated in their respective growth media: moderately hard reconstituted water (MHRW) for the freshwater invertebrate Daphnia magna (D. magna) and minimal growth medium for the Gram-negative bacterium Shewanella oneidensis MR-1 (S. oneidensis). The amount of metal ions released was reduced for NCA compared to NC in MHRW, which correlated to changes in the modeled energetics of release upon Al substitution in the lattice. In minimal medium, metal ion release was approximately an order of magnitude higher compared to MHRW and was similar to the stoichiometry of the bulk nanoparticles for both NCA and NC. Interpretation of the release profiles and modeling indicated that the increase in total metal ion release and the reduced influence of Al doping arises from lactate complexation of metal ions in solution. The relative biological impacts of NC and NCA exposure for both S. oneidensis and D. magna were consistent with the metal release trends observed for minimal medium and MHRW, respectively. Together, these results demonstrate how a combined experimental and computational approach provides valuable insight into the aqueous transformations and biological impacts of complex metal oxide nanoparticles. 
    more » « less
  5. Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space of lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions ( r ∼ 2.1 on average). It is also shown that the metal incorporation ( e.g. , doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS. 
    more » « less