In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs.
more »
« less
Rebel agents that adapt to goal expectation failures
Humans and autonomous agents often have differing knowledge about the world, the goals they pursue, and the actions they perform. Given these differences, an autonomous agent should be capable of rebelling against a goal when its completion would violate that agent’s preferences and motivations. Prior work on agent rebellion has examined agents that can reject actions leading to harmful consequences. Here we elaborate on a specific justification for rebellion in terms of violated goal expectations. Further, the need for rebellion is not always known in advance. So to rebel correctly and justifiably in response to unforeseen circumstances, an autonomous agent must be able to learn the reasons behind violations of its expectations. This paper provides a novel framework for rebellion within a metacognitive architecture using goal monitoring and model learning, and it includes experimental results showing the efficacy of such rebellion.
more »
« less
- Award ID(s):
- 1849131
- NSF-PAR ID:
- 10349752
- Date Published:
- Journal Name:
- Proceedings of the Integrated Execution / Goal Reasoning Workshop (held at the Thirtieth International Conference on Automated Planning and Scheduling - ICAPS-20)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Autonomous agents in a multi-agent system work with each other to achieve their goals. However, In a partially observable world, current multi-agent systems are often less effective in achieving their goals. This limitation is due to the agents’ lack of reasoning about other agents and their mental states. Another factor is the agents’ inability to share required knowledge with other agents. This paper addresses the limitations by presenting a general approach for autonomous agents to work together in a multi-agent system. In this approach, an agent applies two main concepts: goal reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s) to delegates its goals.more » « less
-
We study a multi-agent partially observable environment in which autonomous agents aim to coordinate their actions, while also learning the parameters of the unknown environment through repeated interactions. In particular, we focus on the role of communication in a multi-agent reinforcement learning problem. We consider a learning algorithm in which agents make decisions based on their own observations of the environment, as well as the observations of other agents, which are collected through communication between agents. We first identify two potential benefits of this type of information sharing when agents' observation quality is heterogeneous: (1) it can facilitate coordination among agents, and (2) it can enhance the learning of all participants, including the better informed agents. We show however that these benefits of communication depend in general on its timing, so that delayed information sharing may be preferred in certain scenarios.more » « less
-
We study the problem of developing autonomous agents that can follow human instructions to infer and perform a sequence of actions to complete the underlying task. Significant progress has been made in recent years, especially for tasks with short horizons. However, when it comes to long-horizon tasks with extended sequences of actions, an agent can easily ignore some instructions or get stuck in the middle of the long instructions and eventually fail the task. To address this challenge, we propose a model-agnostic milestone-based task tracker(M-TRACK) to guide the agent and monitor its progress. Specifcally, we propose a milestone builder that tags the instructions with navigation and interaction milestones which the agent needs to complete step by step, and a milestone checker that systemically checks the agent’s progress in its current milestone and determines when to proceed to the next. On the challenging ALFRED dataset, our M-TRACK leads to a notable 33% and 52% relative improvement in unseen success rate over two competitive base models.more » « less
-
null (Ed.)Interactive reinforcement learning (IRL) agents use human feedback or instruction to help them learn in complex environments. Often, this feedback comes in the form of a discrete signal that’s either positive or negative. While informative, this information can be difficult to generalize on its own. In this work, we explore how natural language advice can be used to provide a richer feedback signal to a reinforcement learning agent by extending policy shaping, a well-known IRL technique. Usually policy shaping employs a human feedback policy to help an agent to learn more about how to achieve its goal. In our case, we replace this human feedback policy with policy generated based on natural language advice. We aim to inspect if the generated natural language reasoning provides support to a deep RL agent to decide its actions successfully in any given environment. So, we design our model with three networks: first one is the experience driven, next is the advice generator and third one is the advice driven. While the experience driven RL agent chooses its actions being influenced by the environmental reward, the advice driven neural network with generated feedback by the advice generator for any new state selects its actions to assist the RL agent to better policy shaping.more » « less