This content will become publicly available on July 21, 2023
- Publication Date:
- NSF-PAR ID:
- 10349802
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 2
- Page Range or eLocation-ID:
- 64
- ISSN:
- 0004-6256
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $10\!-\!30\,{\rm Myr}$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $1\!-\!5\,{\rm Myr}$ oncemore »
-
ABSTRACT Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}\, \mathrm{M_\odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $\gtrsim 10^{10.5}\, \mathrm{M_\odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10\!-\!100\, \mathrm{Myr}$ to $1\!-\!10\, \mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleusmore »
-
ABSTRACT We present a study of the stellar host galaxy, CO (1–0) molecular gas distribution and AGN emission on 50–500 pc-scales of the gravitationally lensed dust-obscured AGN MG J0751+2716 and JVAS B1938+666 at redshifts 3.200 and 2.059, respectively. By correcting for the lensing distortion using a grid-based lens modelling technique, we spatially locate the different emitting regions in the source plane for the first time. Both AGN host galaxies have 300–500 pc-scale size and surface brightness consistent with a bulge/pseudo-bulge, and 2 kpc-scale AGN radio jets that are embedded in extended molecular gas reservoirs that are 5–20 kpc in size. The CO (1–0) velocity fields show structures possibly associated with discs (elongated velocity gradients) and interacting objects (off-axis velocity components). There is evidence for a decrement in the CO (1–0) surface brightness at the location of the host galaxy, which may indicate radiative feedback from the AGN, or offset star formation. We find CO–H2 conversion factors of around αCO = 1.5 ± 0.5 (K km s−1 pc2)−1, molecular gas masses of >3 × 1010 M⊙, dynamical masses of ∼1011 M⊙, and gas fractions of around 60 per cent. The intrinsic CO line luminosities are comparable to those of unobscured AGN and dusty star-forming galaxies at similar redshifts, but the infrared luminosities are lower, suggestingmore »
-
ABSTRACT Molecular gas flows are analysed in 14 cluster galaxies (BCGs) centred in cooling hot atmospheres. The BCGs contain $10^{9}\!-\!10^{11}~\rm M_\odot$ of molecular gas, much of which is being moved by radio jets and lobes. The molecular flows and radio jet powers are compared to molecular outflows in 45 active galaxies within z < 0.2. We seek to understand the relative efficacy of radio, quasar, and starburst feedback over a range of active galaxy types. Molecular flows powered by radio feedback in BCGs are ∼10–1000 times larger in extent compared to contemporary galaxies hosting quasar nuclei and starbursts. Radio feedback yields lower flow velocities but higher momenta compared to quasar nuclei, as the molecular gas flows in BCGs are usually ∼10–100 times more massive. The product of the molecular gas mass and lifting altitude divided by the AGN or starburst power – a parameter referred to as the lifting factor – exceeds starbursts and quasar nuclei by 2–3 orders of magnitude, respectively. When active, radio feedback is generally more effective at lifting gas in galaxies compared to quasars and starburst winds. The kinetic energy flux of molecular clouds generally lies below and often substantially below a few per cent of the drivingmore »
-
We present a map of the total intrinsic reddening across ≃ 90 deg2 of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the lephare χ2 minimization SED-fitting routine. We find excellent agreement between the regions of enhanced intrinsic reddening across the central (4 × 4 deg2) region of the LMC and the morphology of the low-level pervasive dust emission as traced by far-IR emission. In addition, we are able to distinguish smaller, isolated enhancements that are coincident with known star-forming regions and the clustering of young stars observed in morphology maps. The level of reddening associated with the molecular ridge south of 30 Doradus is, however, smaller than in the literature reddening maps. The reduced number of galaxies detected in this region, due to high extinction and crowding, may bias our results towards lower reddening values. Our map is consistent with maps derived from red clump stars and from the analysis of the star formation history across the LMC. This study represents one of the first large-scale categorisations of extragalactic sources behind the LMC and as suchmore »