skip to main content


Title: Leveraging Vibrations and Guided Waves in a Human Skull
This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans.  more » « less
Award ID(s):
1933158
NSF-PAR ID:
10349969
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The sphenoid bone articulates with multiple basicranial, facial, and calvarial bones, and in humans its synchondroses are known to contribute to elongation of the skull base and possibly to cranial base angulation. Its early development (embryological, early fetal) has frequently been studied in a comparative context. However, the perinatal events in morphogenesis of the sphenoid have been explored in very few primates. Using a cross-sectional age sample of non-human primates (n=39; 22 platyrrhines; 17 strepsirrhines), we used microcomputed tomographic (µCT) and histological methods to track age changes in the sphenoid bone. In the midline, the sphenoid expands its dimensions at three growth centers, including the sphenooccipital, intrasphenoidal (ISS) and presphenoseptal (PSept) synchondroses. Bilaterally, the alisphenoid is enlarged via appositional bone growth that radiates outward from cartilaginous parts of the alisphenoid during midfetal stages. The alisphenoid remains connected to the basitrabecular process of the basisphenoid via the alibasisphenoidal synchondrosis (ABS). Reactivity to proliferating cell-nuclear antigen is observed in all synchondroses, indicating active growth perinatally. Between mid-fetal and birth ages in Saguinus geoffroyi , all synchondroses decrease in the breadth of proliferating columns of chondrocytes. In most primates, the ABS is greatly diminished by birth, and is likely the earliest to fuse, although at least some cartilage may remain by at least one-month of age. Unlike humans, no non-human primate in our sample exhibits perinatal fusion of ISS. A dichotomy among primates is the orientation of the ABS, which is more rostrally directed in platyrrhines. Based on fetal Saguinus geoffroyi specimens, the ABS was initially oriented within a horizontal plane, and redirects inferiorly during late fetal and perinatal stages. These changes occur in tandem with forward orientation of the orbits in platyrrhines, combined with downward growth of the midface. Thus, we postulate that active growth centers direct the orientation of the midface and orbit before birth. 
    more » « less
  2. We use a high pattern-fidelity technique on piezoelectric electrodes to selectively excite high-order vibration modes, while isolating other modes, in multi-layered through-wall ultrasound power transfer (TWUPT) systems. Physical mechanisms, such as direct and inverse piezoelectric effects at transmitting and receiving piezoelectric elements, as well as wave propagation across an elastic barrier and coupling layers, all contribute to TWUPT. High-order radial modes in a TWUPT system feature strain nodes, where the dynamic strain distribution changes sign in the direction of disks' radii. This study explains theoretically and empirically how covering the strain nodes of vibration modes with continuous electrodes results in substantial cancelations of the electrical outputs. A detailed analysis is given for predicting the locations of the strain nodes. The electrode patterning for creating the transmitter and receiver shapes is determined by the regions where local force and charge cancelation do not occur, i.e., the two modal principal stress components have the same sign. Patterning for creating the electrode shapes is performed by high-fidelity numerical modeling supported by experiments. Using differential excitation on the transmitter side while monitoring transmitted power and efficiency on the reception side at various vibration modes is made possible by the unique nature of TWUPT systems. Due to an improvement in system quality and power factors, it is determined that employing the proposed electrode pattern designs enhances overall device efficiency and active power. The suppression of other modes makes up a filter feature that is paired with the enhancement at the mode under consideration. 
    more » « less
  3. Abstract

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured acoustic data that are induced by propagation of the photoacoustic wavefields through the skull. To properly account for these effects, previously proposed image reconstruction methods for transcranial PACT require knowledge of the spatial distribution of the elastic parameters of the skull. However, estimating the spatial distribution of these parameters prior to the PACT experiment remains challenging. To circumvent this issue, in this work a method to jointly reconstruct the initial pressure distribution and a low-dimensional representation of the elastic parameters of the skull is developed and investigated. The joint reconstruction (JR) problem is solved by use of a proximal optimization method that allows constraints and non-smooth regularization terms. The proposed method is evaluated by use of large-scale three-dimensional (3D) computer-simulation studies that mimic transcranial PACT experiments.

     
    more » « less
  4. Numerical modeling of actual structural systems is a very complex task mainly due to the lack of complete knowledge on the involved parameters. Simplified assumptions on the uncertain geometry, material properties and boundary conditions make the numerical model response differ from the actual structural response. Improvements of the finite element (FE) models to obtain accurate response predictions can be achieved by vibration based FE model updating which uses experimental measures to minimize the differences between the numerical and experimental modal features (i.e. natural frequencies and mode shapes). Within this context, probabilistic model updating procedures based on the Bayes’ theorem were recently proposed in the literature in order to take into account the uncertainties affecting the structural parameters and their influence on the structural response. In this paper, a novel framework to efficiently estimate the posterior marginal PDF of the selected model parameters is proposed. First, the main dynamic parameters to be used for model updating are identified by ambient vibration tests on an actual structural system. Second, a first numerical FE model is developed to perform initial sensitivity analysis. Third, a surrogate model based on polynomial chaos is calibrated on the initial FE model to significantly reduce computational costs. Finally, the posterior marginal PDFs of the chosen model parameters are estimated. The effectiveness of the proposed method is demonstrated using a FE numerical model describing a curved cable-stayed footbridge located in Terni (Umbria Region, Central Italy). 
    more » « less
  5. Numerical modeling of actual structural systems is a very complex task mainly due to the lack of complete knowledge on the involved parameters. Simplified assumptions on the uncertain geometry, material properties and boundary conditions make the numerical model response differ from the actual structural response. Improvements of the finite element (FE) models to obtain accurate response predictions can be achieved by vibration based FE model updating which uses experimental measures to minimize the differences between the numerical and experimental modal features (i.e. natural frequencies and mode shapes). Within this context, probabilistic model updating procedures based on the Bayes’ theorem were recently proposed in the literature in order to take into account the uncertainties affecting the structural parameters and their influence on the structural response. In this paper, a novel framework to efficiently estimate the posterior marginal PDF of the selected model parameters is proposed. First, the main dynamic parameters to be used for model updating are identified by ambient vibration tests on an actual structural system. Second, a first numerical FE model is developed to perform initial sensitivity analysis. Third, a surrogate model based on polynomial chaos is calibrated on the initial FE model to significantly reduce computational costs. Finally, the posterior marginal PDFs of the chosen model parameters are estimated. The effectiveness of the proposed method is demonstrated using a FE numerical model describing a curved cable-stayed footbridge located in Terni (Umbria Region, Central Italy). 
    more » « less