skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
Abstract. Glyoxal (CHOCHO), the simplest dicarbonyl in thetroposphere, is a potential precursor for secondary organic aerosol (SOA)and brown carbon (BrC) affecting air quality and climate. The airbornemeasurement of CHOCHO concentrations during the KORUS-AQ (KORea–US AirQuality study) campaign in 2016 enables detailed quantification of lossmechanisms pertaining to SOA formation in the real atmosphere. Theproduction of this molecule was mainly from oxidation of aromatics (59 %)initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to bethe most important removal path (69 %) and contributed to roughly∼ 20 % (3.7 µg sm−3 ppmv−1 h−1,normalized with excess CO) of SOA growth in the first 6 h in SeoulMetropolitan Area. A reactive uptake coefficient (γ) of∼ 0.008 best represents the loss of CHOCHO by surface uptakeduring the campaign. To our knowledge, we show the first field observationof aerosol surface-area-dependent (Asurf) CHOCHO uptake, which divergesfrom the simple surface uptake assumption as Asurf increases in ambientcondition. Specifically, under the low (high) aerosol loading, the CHOCHOeffective uptake rate coefficient, keff,uptake, linearly increases(levels off) with Asurf; thus, the irreversible surface uptake is areasonable (unreasonable) approximation for simulating CHOCHO loss toaerosol. Dependence on photochemical impact and changes in the chemical andphysical aerosol properties “free water”, as well as aerosol viscosity,are discussed as other possible factors influencing CHOCHO uptake rate. Ourinferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∼ 2 orders of magnitude higher than thoseestimated from salting-in effects constrained by inorganic salts onlyconsistent with laboratory findings that show similar high partitioning intowater-soluble organics, which urges more understanding on CHOCHO solubilityunder real atmospheric conditions.  more » « less
Award ID(s):
2027252
PAR ID:
10349977
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
805 to 821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the particle-wall loss rate. In volatile and intermediate-volatility organic compound (VOC and IVOC) systems in which SOA formation is governed by kinetically limited growth, the effect of vapor-wall deposition on SOA mass yields can be constrained by using high surface area concentrations of seed aerosol to promote the condensation of SOA-forming vapors onto seed aerosol instead of the chamber walls. However, under such high seed aerosol levels, the presence of significant coagulation may complicate the particle-wall deposition correction. Here, we present a model framework that accounts for coagulation in chamber studies in which high seed aerosol surface area concentrations are used. For the α-pinene ozonolysis system, we find that after accounting for coagulation, SOA mass yields remain approximately constant when high seed aerosol surface area concentrations ( ≥  8000 µm2 cm−3) are used, consistent with our prior study (Nah et al., 2016) showing that α-pinene ozonolysis SOA formation is governed by quasi-equilibrium growth. In addition, we systematically assess the uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments. At low seed aerosol surface area concentrations (< 3000 µm2 cm−3), the SOA mass yields at peak SOA growth obtained from the particle-wall loss correction methods agree within 14 %. However, at high seed aerosol surface area concentrations ( ≥  8000 µm2 cm−3), the SOA mass yields at peak SOA growth obtained from different particle-wall loss correction methods can differ by as much as 58 %. These differences arise from assumptions made in the particle-wall loss correction regarding the first-order particle-wall loss rate. This study highlights the importance of accounting for particle-wall deposition accurately during SOA formation chamber experiments and assessing the uncertainties associated with the application of the particle-wall deposition correction method when comparing and using SOA mass yields measured in different studies. 
    more » « less
  2. Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor–particle dynamics model to interpret the roles of gas–particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations. 
    more » « less
  3. Heterogeneous hydroxyl radical (•OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition. It was recently demonstrated that heterogeneous •OH oxidation can age single-component particulate methyltetrol sulfates (MTSs), causing ∼55% of the SOA mass loss. However, our most recent study of freshly generated IEPOX-SOA particulate mixtures suggests that the lifetime of the complete IEPOX-SOA mixture against heterogeneous •OH oxidation can be prolonged through the fragmentation of higher-order oligomers. Published studies suggest that the heterogeneous •OH oxidation of IEPOX SOA could affect the organic atmospheric aerosol budget at varying rates, depending on aerosol chemical composition. However, heterogeneous •OH oxidation kinetics for the full IEPOX-SOA particulate mixture have not been reported. Here, we exposed freshly generated IEPOX-SOA particles to heterogeneous oxidation by •OH under humid conditions (relative humidity ∼57%) for 0−15 atmospheric-equivalent days of aging and derived an effective heterogeneous •OH rate coefficient (kOH) of 2.64 ± 0.4 × 10−13 cm^3 molecules−1 s−1. While ∼44% of particulate organic mass of nonoxidized IEPOX-SOA was consumed over the entire 15 day aging period, only <7% was consumed during the initial 10 aging days. By molecular-level chemical analysis, we determined oligomers were consumed at a faster rate (by a factor of 2−4) than monomers. Analysis of aerosol physicochemical properties shows that IEPOX-SOA has a core−shell morphology, and the shell becomes thinner with •OH oxidation. In summary, this study demonstrates that heterogeneous •OH oxidation of IEPOX-SOA particles is a dynamic process in which aerosol chemical composition and physicochemical properties play important roles. 
    more » « less
  4. Abstract. Secondary organic aerosol (SOA) generated from the photooxidationof aromatic compounds in the presence of oxides of nitrogen (NOx) isknown to efficiently absorb ultraviolet and visible radiation. With exposureto sunlight, the photodegradation of chromophoric compounds in the SOAcauses this type of SOA to slowly photobleach. These photodegradationreactions may occur in cloud droplets, which are characterized by lowconcentrations of solutes, or in aerosol particles, which can have highlyviscous organic phases and aqueous phases with high concentrations ofinorganic salts. To investigate the effects of the surrounding matrix on therates and mechanisms of photodegradation of SOA compounds, SOA was preparedin a smog chamber by photooxidation of toluene in the presence of NOx.The collected SOA was photolyzed for up to 24 h using near-UV radiation(300–400 nm) from a xenon arc lamp under different conditions: directly onthe filter, dissolved in pure water, and dissolved in 1 M ammonium sulfate.The SOA mass absorption coefficient was measured as a function ofirradiation time to determine photobleaching rates. Electrospray ionizationhigh-resolution mass spectrometry coupled to liquid chromatographyseparation was used to observe changes in SOA composition resulting from theirradiation. The rate of decrease in SOA mass absorption coefficient due tophotobleaching was the fastest in water, with the presence of 1 M ammoniumsulfate modestly slowing down the photobleaching. By contrast,photobleaching directly on the filter was slower. The high-resolutionmass spectrometry analysis revealed an efficient photodegradation ofnitrophenol compounds on the filter but not in the aqueous phases, withrelatively little change observed in the composition of the SOA irradiatedin water or 1 M ammonium sulfate despite faster photobleaching than in theon-filter samples. This suggests that photodegradation of nitrophenolscontributes much more significantly to photobleaching in the organic phasethan in the aqueous phase. We conclude that the SOA absorption coefficientlifetime with respect to photobleaching and lifetimes of individualchromophores in SOA with respect to photodegradation will depend strongly onthe sample matrix in which SOA compounds are exposed to sunlight. 
    more » « less
  5. Abstract We investigated the photosensitizing properties of secondary organic aerosol (SOA) formed during the hydroxyl radical (OH) initiated oxidation of naphthalene. This SOA was injected into an aerosol flow tube and exposed to UV radiation and gaseous volatile organic compounds or sulfur dioxide (SO2). The aerosol particles were observed to grow in size by photosensitized uptake of d‐limonene and β‐pinene. In the presence of SO2, a photosensitized production (0.2–0.3 µg m−3 h−1) of sulfate was observed at all relative humidity (RH) levels. Some sulfate also formed on particles in the dark, probably due to the presence of organic peroxides. The dark and photochemical pathways exhibited different trends with RH, unraveling different contributions from bulk and surface chemistry. As naphthalene and other polycyclic aromatics are important SOA precursors in the urban and suburban areas, these dark and photosensitized reactions are likely to play an important role in sulfate and SOA formation. 
    more » « less