skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring collaborative caption editing to augment video-based learning
Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing.  more » « less
Award ID(s):
2119589 1801652
PAR ID:
10350277
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Educational technology research and development
ISSN:
1042-1629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent{'}s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset {``}Video-to-Commonsense (V2C){''} that contains {\textasciitilde}9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions. 
    more » « less
  2. Recent research has investigated automatic methods for identifying how important each word in a text is for the overall message, in the context of people who are Deaf and Hard of Hearing (DHH) viewing video with captions. We examine whether DHH users report benefits from visual highlighting of important words in video captions. In formative interview and prototype studies, users indicated a preference for underlining of 5%-15% of words in a caption text to indicate that they are important, and they expressed an interest for such text markup in the context of educational lecture videos. In a subsequent user study, 30 DHH participants viewed lecture videos in two forms: with and without such visual markup. Users indicated that the videos with captions containing highlighted words were easier to read and follow, with lower perceived task-load ratings, compared to the videos without highlighting. This study motivates future research on caption highlighting in online educational videos, and it provides a foundation for how to evaluate the efficacy of such systems with users. 
    more » « less
  3. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effectiveness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content's impact on students could help lead to more effective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learning platform that allowed students to request skill-related videos while completing their online middle-school mathematics assignments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students' performance and which features could be used to personalize students' learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem-specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students' performance, two video features had significant qualitative interactions with students' prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work can be found at https://osf.io/cxkzf/. 
    more » « less
  4. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. 
    more » « less
  5. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work is hosted by the Open Science Foundation. 
    more » « less