skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tectonostratigraphy and major structures of the Georgian Greater Caucasus: Implications for structural architecture, along-strike continuity, and orogen evolution
Abstract Although the Greater Caucasus Mountains have played a central role in absorbing late Cenozoic convergence between the Arabian and Eurasian plates, the orogenic architecture and the ways in which it accommodates modern shortening remain debated. Here, we addressed this problem using geologic mapping along two transects across the southern half of the western Greater Caucasus to reveal a suite of regionally coherent stratigraphic packages that are juxtaposed across a series of thrust faults, which we call the North Georgia fault system. From south to north within this system, stratigraphically repeated ~5–10-km-thick thrust sheets show systematically increasing bedding dip angles (<30° in the south to subvertical in the core of the range). Likewise, exhumation depth increases toward the core of the range, based on low-temperature thermochronologic data and metamorphic grade of exposed rocks. In contrast, active shortening in the modern system is accommodated, at least in part, by thrust faults along the southern margin of the orogen. Facilitated by the North Georgia fault system, the western Greater Caucasus Mountains broadly behave as an in-sequence, southward-propagating imbricate thrust fan, with older faults within the range progressively abandoned and new structures forming to accommodate shortening as the thrust propagates southward. We suggest that the single-fault-centric “Main Caucasus thrust” paradigm is no longer appropriate, as it is a system of faults, the North Georgia fault system, that dominates the architecture of the western Greater Caucasus Mountains.  more » « less
Award ID(s):
2050618
PAR ID:
10350383
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geosphere
Volume:
18
Issue:
1
ISSN:
1553-040X
Page Range / eLocation ID:
211 to 240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT New paleoseismic trenching indicates late Quaternary oblique right-lateral slip on the Leech River fault, southern Vancouver Island, Canada, and constrains permanent forearc deformation in northern Cascadia. A south-to-north reduction in northward Global Navigation Satellite System velocities and seismicity across the Olympic Mountains, Strait of Juan de Fuca (JDF), and the southern Strait of Georgia, has been used as evidence for permanent north–south crustal shortening via thrust faulting between a northward migrating southern forearc and rigid northern backstop in southwestern Canada. However, previous paleoseismic studies indicating late Quaternary oblique right-lateral slip on west-northwest-striking forearc faults north of the Olympic Mountains and in the southern Strait of Georgia are more consistent with forearc deformation models that invoke oroclinal bending and(or) westward extrusion of the Olympic Mountains. To help evaluate strain further north across the Strait of JDF, we present the results from two new paleoseismic trenches excavated across the Leech River fault. In the easternmost Good Hope trench, we document a vertical fault zone and a broad anticline deforming glacial till. Comparison of till clast orientations in faulted and undeformed glacial till shows evidence for postdeposition faulted till clast rotation, indicating strike-slip shear. The orientation of opening mode fissuring during surface rupture is consistent with right-lateral slip and the published regional SHmax directions. Vertical separation and the formation of scarp-derived colluvium along one fault also indicate a dip-slip component. Radiocarbon charcoal dating within offset glacial till and scarp-derived colluvium suggest a single surface rupturing earthquake at 9.4±3.4  ka. The oblique right-lateral slip sense inferred in the Good Hope trench is consistent with slip kinematics observed on other regional west-northwest-striking faults and indicates that these structures do not accommodate significant north–south shortening via thrust faulting. 
    more » « less
  2. Abstract Back‐arc basins frequently form within subduction zones, creating sources of lithospheric weakness that can accommodate subsequent compressional deformation. The crustal structure of these basins, including whether they contain extended preexisting crust and/or new crust formed by seafloor spreading, can thus exert a major influence on strain partitioning in orogenic belts. Here, we present field observations, petrographic analyses, and major/trace element geochemical data from the Caucasus Basin, a back‐arc basin that initiated in continental lithosphere in the Jurassic and subsequently localized deformation in the present‐day Greater Caucasus during the latter stages of Cenozoic Arabia‐Eurasia continent‐continent collision. Our results reveal distinct lithologic and geochemical domains separated by south‐vergent thrust faults within the North Georgia fault system (NGFS) in the Republic of Georgia. Along the Enguri River, shallow intrusive and volcanic rocks are thrust over dominantly volcaniclastic cover, whereas along the Tskhenistskali River, intrusions into metasedimentary rocks are juxtaposed against volcanic flows. The presence of a minor depleted mantle geochemical signature in intrusive rocks from the Tskhenistskali traverse supports an episode of Jurassic seafloor spreading in the Caucasus Basin, with the resulting lithosphere facilitating Cenozoic basin closure by north‐dipping subduction during Arabia‐Eurasia collision. The Khaishi fault along the Enguri River and the Lentekhi fault along the Tskhenistskali river mark major juxtapositions in back‐arc crustal structure and may be components of the terminal suture indicating Caucasus Basin closure. Our results highlight how magmatic rocks in relict basin rocks can yield key insights into basin structure and orogenesis, even when no ophiolite is present. 
    more » « less
  3. Abstract Convergent margins play a fundamental role in the construction and modification of Earth's lithosphere and are characterized by poorly understood episodic processes that occur during the progression from subduction to terminal collision. On the northern margin of the active Arabia‐Eurasia collision zone, the Greater Caucasus Mountains provide an opportunity to study a protracted convergent margin that spanned most of the Phanerozoic and culminated in Cenozoic continental collision. However, the main episodes of lithosphere formation and deformation along this margin remain enigmatic. Here, we use detrital zircon U–Pb geochronology from Paleozoic and Mesozoic (meta)sedimentary rocks in the Greater Caucasus, along with select zircon U–Pb and Hf isotopic data from coeval igneous rocks, to link key magmatic and depositional episodes along the Caucasus convergent margin. Devonian to Early Carboniferous rocks were deposited prior to Late Carboniferous accretion of the Greater Caucasus crystalline core onto the Laurussian margin. Permian to Triassic rocks document a period of northward subduction and forearc deposition south of a continental margin volcanic arc in the Northern Caucasus and Scythian Platform. Jurassic rocks record the opening of the Caucasus Basin as a back‐arc rift during southward migration of the arc front into the Lesser Caucasus. Cretaceous rocks have few Jurassic‐Cretaceous zircons, indicating a period of relative magmatic quiescence and minimal exhumation within this basin. Late Cenozoic closure of the Caucasus Basin juxtaposed the Lesser Caucasus arc to the south against the crystalline core of the Greater Caucasus to the north and led to the formation of a hypothesized terminal suture. We expect this suture to be within ~20 km of the southern range front of the Greater Caucasus because all analysed rocks to the north exhibit a provenance affinity with the crystalline core of the Greater Caucasus. 
    more » « less
  4. The Greater Caucasus orogen forms the northern edge of the Arabia-Eurasia collision zone. Although the orogen has long been assumed to exhibit dominantly thick-skinned style deformation via reactivation of high-angle extensional faults, recent work suggests the range may have accommodated several hundred kilometers or more of shortening since its ~30 Ma initiation, and this shortening may be accommodated via thin-skinned, imbricate fan-style deformation associated with underthrusting and/or subduction. However, robust shortening estimates based upon surface geologic observations are lacking. Here we present line-length and area balanced cross sections along two transects across the western Greater Caucasus that provide minimum shortening estimates of 130-200 km. These cross sections demonstrate that a thin-skinned structural style provides a viable explanation for the structure of the Greater Caucasus, and highlight major structures that may accommodate additional, but unconstrained, shortening. 
    more » « less
  5. Late Cretaceous to Paleogene contractional deformation in the southern U.S. Cordillera is commonly attributed to the Laramide Orogeny, in part because of the prevalence of moderate- to high-angle, basement-involved reverse faults. However, it is unclear if the tectonic models developed for the archetypal Laramide foreland belt in the U.S. Rocky Mountain region are applicable to the southern U.S. Cordillera. New geologic mapping of the northern Chiricahua Mountains in southeast Arizona, USA, indicates the presence of an originally sub-horizontal thrust fault, the Fort Bowie fault, and a thin-skinned ramp-flat thrust system that is offset by a younger thrust fault, the Apache Pass fault, that carries basement rocks. Cross-cutting relationships and new geochronologic data indicate deformation on both faults occurred between 60 Ma and 35 Ma. A biotite 40Ar/39Ar plateau age of 48 Ma from the hanging wall of the basement-involved Apache Pass fault is interpreted to record erosion related to reverse fault movement and rock uplift. The presence of thrust faults in southeast Arizona raises the possibility of a latest Cretaceous−Eocene retroarc orogenic wedge that linked the Sevier and Mexican thrust belts to the north and south, respectively. Basement-involved deformation does not rule out the presence of a retroarc wedge, and many Cordilleran orogenic systems include basement-involved thrusting. 
    more » « less