skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RR Lyrae Stars in the Newly Discovered Ultra-faint Dwarf Galaxy Centaurus I*
Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies.  more » « less
Award ID(s):
1816196
PAR ID:
10350387
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
162
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ = 0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC. 
    more » « less
  2. Abstract We present deep Magellan+Megacam imaging of Centaurus I (Cen I) and Eridanus IV (Eri IV), two recently discovered Milky Way ultrafaint satellites. Our data reach ∼2–3 mag deeper than the discovery data from the DECam Local Volume Exploration Survey. We use these data to constrain their distances, structural properties (e.g., half-light radii, ellipticity, and position angle), and luminosities. We investigate whether these systems show signs of tidal disturbance and identify new potential member stars using Gaia EDR3. Our deep color–magnitude diagrams show that Cen I and Eri IV are consistent with an old (τ∼ 13.0 Gyr) and metal-poor ([Fe/H] ≤ −2.2) stellar population. We find Cen I to have a half-light radius of r h = 2. 60 ± 0. 30 (90.6 ± 11 pc), an ellipticity ofϵ= 0.36 ± 0.05, a distance ofD= 119.8 ± 4.1 kpc (m−M= 20.39 ± 0.08 mag), and an absolute magnitude ofMV= −5.39 ± 0.19. Similarly, Eri IV has r h = 3. 24 ± 0. 48 (65.9 ± 10 pc),ϵ= 0.26 ± 0.09,D= 69.9 ± 3.6 kpc (m−M= 19.22 ± 0.11 mag), andMV= −3.55 ± 0.24. These systems occupy a space on the size–luminosity plane consistent with other known Milky Way dwarf galaxies, which supports the findings from our previous spectroscopic follow-up. Cen I has a well-defined morphology that lacks any clear evidence of tidal disruption, whereas Eri IV hosts a significant extended feature with multiple possible interpretations. 
    more » « less
  3. Abstract We present new period-ϕ31-[Fe/H] relations for first-overtone RRL stars (RRc), calibrated over a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0) using the largest currently available set of Galactic halo field RRL with homogeneous spectroscopic metallicities. Our relations are defined in the optical (ASAS-SNVband) and, inaugurally, in the infrared (WISEW1andW2bands). OurV-band relation can reproduce individual RRc spectroscopic metallicities with a dispersion of 0.30 dex over the entire metallicity range of our calibrator sample (an rms smaller than what we found for other relations in literature including nonlinear terms). Our infrared relation has a similar dispersion in the low- and intermediate-metallicity range ([Fe/H] ≲ −0.5), but tends to underestimate the [Fe/H] abundance around solar metallicity. We tested our relations by measuring both the metallicity of the Sculptor dSph and a sample of Galactic globular clusters, rich in both RRc and RRab stars. The average metallicity we obtain for the combined RRL sample in each cluster is within ±0.08 dex of their spectroscopic metallicities. The infrared and optical relations presented in this work will enable deriving reliable photometric RRL metallicities in conditions where spectroscopic measurements are not feasible; e.g., in distant galaxies or reddened regions (observed with upcoming Extremely Large Telescopes and the James Webb Space Telescope), or in the large sample of new RRL that will be discovered in large-area time-domain photometric surveys (such as the LSST and the Roman space telescope). 
    more » « less
  4. Abstract Utilizing Zwicky Transient Facility (ZTF) data and existing RR Lyrae stars (RRLs) catalogs, this study achieves the first calibration of theP−ϕ31−R21− [Fe/H] andP−ϕ31−A2−A1− [Fe/H] relations in the ZTF photometric system for RRab and RRc stars. We also recalibrate the period–absolute magnitude–metallicity (PMZ) and period–Wesenheit–metallicity (PWZ) relations in the ZTFgribands for RRab and RRc stars. Based on nearly 4100 stars with precise measurements ofP,ϕ31,A2, andA1, and available spectroscopic metallicity estimates, the photometric metallicity relations exhibit strong internal consistency across different bands, supporting the use of a weighted averaging method for the final estimates. The photometric metallicity estimates of globular clusters based on RR Lyrae members also show excellent agreement with high-resolution spectroscopic measurements, with a typical scatter of 0.15 dex for RRab stars and 0.14 dex for RRc stars, respectively. Using hundreds of local RRLs with newly derived photometric metallicities and precise Gaia Data Release 3 parallaxes, we establish the PMZ and PWZ relations in multiple bands. Validation with globular cluster RR Lyrae members reveals typical distance errors of 3.1% and 3.0% for the PMZ relations, and 3.1% and 2.6% for the PWZ relations for RRab and RRc stars, respectively. Compared to PMZ relations, the PWZ relations are tighter and almost unbiased, making them the recommended choice for distance calculations. We present a catalog of 73,795 RRLs with precise photometric metallicities; over 95% of them have accurate distance measurements. Compared to Gaia DR3, approximately 25,000 RRLs have precise photometric metallicities and distances derived for the first time. 
    more » « less
  5. Abstract We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs;MV= −7.1 to −0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous set of stellar metallicities in UFDs, increasing the number of metallicities in these 13 galaxies by a factor of 5 and doubling the number of metallicities in all known MW UFDs. We provide the first well-populated MDFs for all galaxies in this sample, with 〈[Fe/H]〉 ranging from −3.0 to −2.0 dex, andσ[Fe/H]ranging from 0.3–0.7 dex. We find a nearly constant [Fe/H]∼ −2.6 over 3 decades in luminosity (∼102–105L), suggesting that the mass–metallicity relationship does not hold for such faint systems. We find a larger fraction (24%) of extremely metal-poor ([Fe/H]< −3) stars across our sample compared to the literature (14%), but note that uncertainties in our most metal-poor measurements make this an upper limit. We find 19% of stars in our UFD sample to be metal-rich ([Fe/H] > −2), consistent with the sum of literature spectroscopic studies. MW UFDs are known to be predominantly >13 Gyr old, meaning that all stars in our sample are truly ancient, unlike metal-poor stars in the MW, which have a range of possible ages. Our UFD metallicities are not well matched to known streams in the MW, providing further evidence that known MW substructures are not related to UFDs. We include a catalog of our stars to encourage community follow-up studies, including priority targets for ELT-era observations. 
    more » « less