Abstract Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.
more »
« less
Catalytic mechanism and design principle of coordinately unsaturated single metal atom-doped covalent triazine frameworks with high activity and selectivity for CO 2 electroreduction
Electrochemical conversion of carbon dioxide (CO 2 ) to chemicals or fuels can effectively promote carbon capture and utilization, and reduce greenhouse gas emission but a serious impediment to the process is to find highly active electrocatalysts that can selectively produce desired products. Herein, we have established the design principles based on the density functional theory calculations to screen the most promising catalysts from the family of coordinately unsaturated/saturated transition metal (TM) embedded into covalent organic frameworks (TM-COFs). An intrinsic descriptor has been discovered to correlate the molecular structures of the active centers with both the activity and selectivity of the catalysts. Among all the catalysts, the coordinately unsaturated Ni-doped covalent triazine framework (Ni-CTF) is identified as one of the best electrocatalysts with the lowest overpotential (0.34 V) for CO 2 reduction toward CO while inhibiting the formation of the side products, H 2 and formic acid. Compared with coordinately saturated TM-COFs and noble metals ( e.g. Au and Ag), TM-CTFs exhibit higher catalytic activity and stronger inhibition of side products. The predictions are supported by previous experimental results. This study provides an effective strategy and predictive tool for developing desired catalysts with high activity and selectivity.
more »
« less
- Award ID(s):
- 1662288
- PAR ID:
- 10350527
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 3555 to 3566
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO.more » « less
-
Au is one of the most promising electrocatalysts to convert CO 2 into CO in an aqueous-phase electrochemical reduction. However, ultrasmall Au nanocatalysts (AuNCs, <2 nm) have proven to be favorable for water reduction over CO 2 , although they possess a large surface-to-volume ratio and potentially are ideal for CO 2 reduction. We herein report that ultrasmall AuNCs (1.9 ± 0.3 nm) supported on nitrided carbon are remarkably active and selective for CO 2 reduction. The mass activity for CO of AuNCs reaches 967 A g −1 with a faradaic efficiency for CO of ∼83% at −0.73 V ( vs . reversible hydrogen electrode) that is an order of magnitude more active than the state-of-the-art results. The high activity is endowed by the large surface area per unit weight and the high selectivity of ultrasmall AuNCs for CO 2 reduction originates from the cooperative effect of Au and the nitrided carbon support where the surface N sites act as Lewis bases to increase the surface charge density of AuNCs and enhance the localized concentration of CO 2 nearby catalytically active Au sites. We show that our results can be applied to other pre-synthesized Au catalysts to largely improve their selectivity for CO 2 reduction by 50%. Our method is expected to illustrate a general guideline to effectively lower the cost of Au catalysts per unit weight of the product while maintaining its high selectivity for CO 2 reduction.more » « less
-
Urea synthesis through the simultaneous electrocatalytic reduction of N2and CO2molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production, in which the development of stable, highly efficient, and highly selective catalysts to boost the chemisorption, activation, and coupling of inert N2and CO2molecules remains rather challenging. Herein, by means of density functional theory computations, we proposed a new class of two‐dimensional nanomaterials, namely, transition‐metal phosphide monolayers (TM2P, TM = Ti, Fe, Zr, Mo, and W), as the potential electrocatalysts for urea production. Our results showed that these TM2P materials exhibit outstanding stability and excellent metallic properties. Interestingly, the Mo2P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier (0.35 eV) for C–N coupling, low limiting potential (−0.39 V), and significant suppressing effects on the competing side reactions. The outstanding catalytic activity of the Mo2P monolayer can be ascribed to its optimal adsorption strength with the key *NCON species due to its moderate positive charges on the Mo active sites. Our findings not only propose a novel catalyst with high‐efficiency and high‐selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.more » « less
-
Thin films of Ni 3 Al and Ni 3 Ga on carbon solid supports have been shown to generate multi-carbon products in electrochemical CO 2 reduction, an activity profile that, until recently, was ascribed exclusively to Cu-based catalysts. This catalytic behavior has introduced questions regarding the role of each metal, as well as other system components, during CO 2 reduction. Here, the significance of electrode structure and solid support choice in determining higher- versus lower-order reduction products is explored, and the commonly invoked Fischer–Tropsch-type mechanism of CO 2 reduction to multi-carbon products is indirectly probed. Electrochemical studies of both intermetallic and non-mixed Ni–Group 13 catalyst films suggest that intermetallic character is required to achieve C2 and C3 products irrespective of carbon support choice, negating the possibility of separate metal sites performing distinct yet complementary roles in CO 2 reduction. Furthermore, Ni 3 Al and Ni 3 Ga were shown to be incapable of generating higher-order reduction products in D 2 O, suggesting a departure from accepted mechanisms for CO 2 reduction on Cu. Additional routes to multi-carbon products may therefore be accessible when developing intermetallic catalysts for CO 2 electroreduction.more » « less
An official website of the United States government

