skip to main content


Title: Fast Sparse Decision Tree Optimization via Reference Ensembles
Sparse decision tree optimization has been one of the most fundamental problems in AI since its inception and is a challenge at the core of interpretable machine learning. Sparse decision tree optimization is computationally hard, and despite steady effort since the 1960's, breakthroughs have been made on the problem only within the past few years, primarily on the problem of finding optimal sparse decision trees. However, current state-of-the-art algorithms often require impractical amounts of computation time and memory to find optimal or near-optimal trees for some real-world datasets, particularly those having several continuous-valued features. Given that the search spaces of these decision tree optimization problems are massive, can we practically hope to find a sparse decision tree that competes in accuracy with a black box machine learning model? We address this problem via smart guessing strategies that can be applied to any optimal branch-and-bound-based decision tree algorithm. The guesses come from knowledge gleaned from black box models. We show that by using these guesses, we can reduce the run time by multiple orders of magnitude while providing bounds on how far the resulting trees can deviate from the black box's accuracy and expressive power. Our approach enables guesses about how to bin continuous features, the size of the tree, and lower bounds on the error for the optimal decision tree. Our experiments show that in many cases we can rapidly construct sparse decision trees that match the accuracy of black box models. To summarize: when you are having trouble optimizing, just guess.  more » « less
Award ID(s):
2022040
NSF-PAR ID:
10350679
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
9
ISSN:
2159-5399
Page Range / eLocation ID:
9604 to 9613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several recent research efforts have proposed Machine Learning (ML)-based solutions that can detect complex patterns in network traffic for a wide range of network security problems. However, without understanding how these black-box models are making their decisions, network operators are reluctant to trust and deploy them in their production settings. One key reason for this reluctance is that these models are prone to the problem of underspecification, defined here as the failure to specify a model in adequate detail. Not unique to the network security domain, this problem manifests itself in ML models that exhibit unexpectedly poor behavior when deployed in real-world settings and has prompted growing interest in developing interpretable ML solutions (e.g., decision trees) for “explaining” to humans how a given black-box model makes its decisions. However, synthesizing such explainable models that capture a given black-box model’s decisions with high fidelity while also being practical (i.e., small enough in size for humans to comprehend) is challenging. In this paper, we focus on synthesizing high-fidelity and low-complexity decision trees to help network operators determine if their ML models suffer from the problem of underspecification. To this end, we present TRUSTEE, a framework that takes an existing ML model and training dataset generate a high-fidelity, easy-to-interpret decision tree, and associated trust report. Using published ML models that are fully reproducible, we show how practitioners can use TRUSTEE to identify three common instances of model underspecification, i.e., evidence of shortcut learning, spurious correlations, and vulnerability to out-of-distribution samples. 
    more » « less
  2. Binary classification is a fundamental machine learning task defined as correctly assigning new objects to one of two groups based on a set of training objects. Driven by the practical importance of binary classification, numerous machine learning techniques have been developed and refined over the last three decades. Among the most popular techniques are artificial neural networks, decision trees, ensemble methods, logistic regression, and support vector machines. We present here machine learning and pattern recognition algorithms that, unlike the commonly used techniques, are based on combinatorial optimization and make use of information on pairwise relations between the objects of the data set, whether training objects or not. These algorithms solve the respective problems optimally and efficiently, in contrast to the primarily heuristic approaches currently used for intractable problem models in pattern recognition and machine learning. The algorithms described solve efficiently the classification problem as a network flow problem on a graph. The technical tools used in the algorithm are the parametric cut procedure and a process called sparse computation that computes only the pairwise similarities that are “relevant.” Sparse computation enables the scalability of any algorithm that uses pairwise similarities. We present evidence on the effectiveness of the approaches, measured in terms of accuracy and running time, in pattern recognition, image segmentation, and general data mining. 
    more » « less
  3. Sparse decision trees are one of the most common forms of interpretable models. While recent advances have produced algorithms that fully optimize sparse decision trees for prediction, that work does not address policy design, because the algorithms cannot handle weighted data samples. Specifically, they rely on the discreteness of the loss function, which means that real-valued weights cannot be directly used. For example, none of the existing techniques produce policies that incorporate inverse propensity weighting on individual data points. We present three algorithms for efficient sparse weighted decision tree optimization. The first approach directly optimizes the weighted loss function; however, it tends to be computationally inefficient for large datasets. Our second approach, which scales more efficiently, transforms weights to integer values and uses data duplication to transform the weighted decision tree optimization problem into an unweighted (but larger) counterpart. Our third algorithm, which scales to much larger datasets, uses a randomized procedure that samples each data point with a probability proportional to its weight. We present theoretical bounds on the error of the two fast methods and show experimentally that these methods can be two orders of magnitude faster than the direct optimization of the weighted loss, without losing significant accuracy. 
    more » « less
  4. Abstract Background

    Advanced machine learning models have received wide attention in assisting medical decision making due to the greater accuracy they can achieve. However, their limited interpretability imposes barriers for practitioners to adopt them. Recent advancements in interpretable machine learning tools allow us to look inside the black box of advanced prediction methods to extract interpretable models while maintaining similar prediction accuracy, but few studies have investigated the specific hospital readmission prediction problem with this spirit.

    Methods

    Our goal is to develop a machine-learning (ML) algorithm that can predict 30- and 90- day hospital readmissions as accurately as black box algorithms while providing medically interpretable insights into readmission risk factors. Leveraging a state-of-art interpretable ML model, we use a two-step Extracted Regression Tree approach to achieve this goal. In the first step, we train a black box prediction algorithm. In the second step, we extract a regression tree from the output of the black box algorithm that allows direct interpretation of medically relevant risk factors. We use data from a large teaching hospital in Asia to learn the ML model and verify our two-step approach.

    Results

    The two-step method can obtain similar prediction performance as the best black box model, such as Neural Networks, measured by three metrics: accuracy, the Area Under the Curve (AUC) and the Area Under the Precision-Recall Curve (AUPRC), while maintaining interpretability. Further, to examine whether the prediction results match the known medical insights (i.e., the model is truly interpretable and produces reasonable results), we show that key readmission risk factors extracted by the two-step approach are consistent with those found in the medical literature.

    Conclusions

    The proposed two-step approach yields meaningful prediction results that are both accurate and interpretable. This study suggests a viable means to improve the trust of machine learning based models in clinical practice for predicting readmissions through the two-step approach.

     
    more » « less
  5. Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. 
    more » « less