skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling chance processes in a classroom’s ecological investigation.
The work of ecologists entails structuring variability by parsing random and directed variability. Middle-grade students are often introduced to ideas about probability and statistics in mathematics, but these ideas are rarely employed in science investigations. This paper reports on a design study in one 7th-grade science classroom that participated in a citizen-science project investigating changes in invasive crab populations. Students surveyed crab abundance at one field site, contributing observations to a citizen-science database. Finding an unexpected atio between male and female crabs in their sample, students compared the ratio obtained in the field to a simulated sampling distribution of ratios in light of an equiprobable assumption. Finding that their sample’s sex ratio was improbable yet consistent with samples in the larger database instigated a search for ecological mechanism. Evidence of student thinking in classroom conversations point to seeds of distinguishing random from directed variability.  more » « less
Award ID(s):
2010207
PAR ID:
10350757
Author(s) / Creator(s):
; ;
Editor(s):
Chinn, C.; Tan, E.; Chan C.; Yael, K
Date Published:
Journal Name:
Proceedings of the 16th International Conference of the Learning Sciences
Page Range / eLocation ID:
719-726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Communication of ideas involves the simultaneous efforts of verbal, physical and neurological processes (Sherr, 2008). In elementary classrooms where young students are in the process of developing their verbal capacities, gestures from both the teacher and students serve as a key component of communication of new ideas and the processing of social information (Foglia & Wilson, 2013). Thus far, research efforts to understand how students utilize gestures in the communication and understanding of ideas have focused primarily on mathematics and the physical sciences (see Nemirovsky & Ferrara, 2009; Nuñez, Edwards & Matos, 1999; Shapiro, 2014; Sherr, 2008). With the introduction of the Next Generation Science Standards (NGSS Lead States, 2013), students engineering is now included in K-12 instruction. Engineering education centers around designing and optimizing solutions to engineering challenges. The creation of a design solution differentiates engineering education from other classroom subject areas. Current work in engineering education focuses mostly on students’ words or drawings, leaving out gestures as an important component of students' communication of engineering designs. This study aimed to contribute to the general understanding of students’ use of gestures and manipulatives when discussing their engineering design solutions and is part of a larger NSF-funded project. Students participated in pre- and post-field trip classroom activities that extended learning done on an engineering-focused field trip to the local science center into the classroom. For this study, we focused on a module that challenged students to design a craft that either slowed the fall of a penny (classroom engineering design challenge) or hovered in a column of upward moving air (field trip engineering design challenge). We analyzed six videos (3 from the classroom and 3 from the field trip) of first-grade student explanations of their crafts to identify their use of gestures and prototyped craft design solutions in communicating. In this paper, we explore how student use of gestures and use of prototyped design solutions overlap and differentiate to understand how student sense-making can be understood through each. 
    more » « less
  2. null (Ed.)
    We worked with local K–6 teachers to develop lesson plans that would connect a 50-minute engineering design challenge, completed during a field trip, to the students’ classroom learning. The result was a model for designing pre-visit classroom activities that develop students’ familiarity with phenomena, tools, and processes that will be used during the field trip and post-visit classroom activities that provide students with opportunities to reflect on some of their field trip experiences. While the field trip activity alone is an exciting and productive learning opportunity, students who complete the full set of classroom and field trip activities participate in a richer experience that engages them in more of the practices of science and engineering and more fully develops the disciplinary core ideas related to engineering and physical science. Each Engineering Exploration module includes four activities: an engineering design activity completed during a field trip to an interactive science museum, accompanied by two preactivities and one post activity done in students’ classroom and facilitated by their elementary school teacher. While each classroom activity was designed to take no more than 50 minutes, many teachers found it valuable to extend each lesson to allow for deeper discussion and engagement with the activities. The classroom experiences presented here are associated with a field trip program in which students iteratively design a craft out of paper and tape that will hover above a “fire” (upward moving column of air) while carrying a “sensor” (washer). The classroom activities surrounding this field trip help students develop conceptual understandings of forces to navigate the engineering design challenge. 
    more » « less
  3. ABSTRACT Reform‐oriented science classrooms encourage environments in which students engage in a collective enterprise of making sense of their science ideas together. Teachers who strive for these sorts of environments support students in collaboratively constructing and answering their own questions about phenomena and making sense of competing ideas together. However, to engage with one another productively, students must ask questions, share incomplete thoughts, and comment on each other's ideas, all of which can be seen as risky and unfamiliar behavior that may result in feelings of uncertainty or other negative classroom consequences. We conduct an explanatory case study using student and teacher interviews, teacher surveys, and classroom video collected over 2 years to investigate how one teacher used classroom norms to establish and maintain a culture in which students appeared committed to taking risks to improve their collective knowledge‐building. We found that norms were one practical tool the teacher used to encourage students to take risks and that also seemed helpful for negotiating individual and group uncertainty. Norms were also tools the teacher used to ensure that she and her students had similar expectations for classroom engagement. This study practically addresses some key challenges teachers face in enacting reform‐oriented science teaching and offers suggestions for how continued research regarding norms and uncertainty can continue to further science reform efforts. 
    more » « less
  4. IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction. 
    more » « less
  5. A team of literacy, science, and theatre educators have been working to engage children in an urban public school system in the United States through embodied performances, where students embody and dramatise science ideas. This study focuses on one fourth‐grade classroom when instruction was done remotely due to Covid‐19. Children in the class were asked to compose videos of themselves acting out and/or exploring science phenomena and concepts, and we analysed the affordances of these multimodal compositions. We situate the need for this study in claims from the Next Generation Science Standards that literacy skills are necessary to build and communicate science knowledge. In doing so, we center social semiotics perspectives that conceive of composition broadly as production‐oriented processes drawing from various semiotic resources. The multimodal compositions in Mr. M's science class included both primarily embodied compositions and primarily digital compositions, and we elaborate on one focal example of each in the findings. Intertwined affordances of the focal children and their classmates' multimodal science compositions include opportunities to creatively engage with and negotiate science ideas, to draw from personal and social knowledge during meaning‐making, and to intentionally make rhetorical choices. 
    more » « less