skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemical analysis of BaZr0.8Y0.2O3-δ-Gd0.2Ce0.8O2-δ composite electrolytes by distribution of relaxation time method
Award ID(s):
1832809
PAR ID:
10350783
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Ceramics International
Volume:
48
Issue:
9
ISSN:
0272-8842
Page Range / eLocation ID:
12856 to 12865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CaSrFe0.75Co0.75Mn0.5O6-δ, an oxygen-deficient perovskite, had been reported for its better electrocatalytic properties of oxygen evolution reaction. It is essential to investigate different properties such as the thermal conductivity of such efficient functional materials. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, the authors present an investigation of the thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ was found to be 0.724 W/m/K at 25 °C, exhibiting a notable thermal insulation property i.e., low thermal conductivity. 
    more » « less
  2. unknown (Ed.)
    The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to be 0.574W/m/K, exhibiting a notable thermal insulation property. 
    more » « less
  3. unknown (Ed.)
    This study introduces a novel oxygen-deficient perovskite, Sr2Fe0.75Co0.75Mn0.5O6-δ, synthesized through a solid-state reaction and thoroughly characterized by Powder XRD, SEM and direct current (DC) electrical conductivity measurements. The material, exhibiting a cubic crystal structure with the Pm3̅m space group, demonstrates intriguing electrical properties. At temperatures ranging from 25 to 400 °C, the material displays semiconductor-type conductivity, transitioning seamlessly to metallic-type conductivity from 400 to 800 °C. The deliberate incorporation of cobalt into the perovskite structure is found to be pivotal, as evidenced by a comparative analysis with its parent compound, Sr2FeMnO6-δ. This investigation reveals a substantial improvement in electrical conductivity, underscoring the significance of the partial substitution of cobalt. The tailored electrical properties of Sr2Fe0.75Co0.75Mn0.5O6-δ position it as a versatile candidate for electronic applications. 
    more » « less
  4. Many synthesis and verification problems can be reduced to determining the truth of formulas over the real numbers. These formulas often involve constraints with integrals in them. To this end, we extend the framework of δ-decision procedures with techniques for handling integrals of user-specified real functions. We implement this decision procedure in the tool ∫dReal, which is built on top of dReal. We evaluate ∫dReal on a suite of problems that include formulas verifying the fairness of algorithms and the privacy and the utility of privacy mechanisms and formulas that synthesize parameters for the desired utility of privacy mechanisms. The performance of the tool in these experiments demonstrates the effectiveness of ∫dReal. 
    more » « less