Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in themore »
A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape
Land is a natural resource that humans have utilized for life and various activities. Land use/land cover change (LULCC) has been of great concern to many countries over the years. Some of the main reasons behind LULCC are rapid population growth, migration, and the conversion of rural to urban areas. LULC has a considerable impact on the land-atmosphere/climate interactions. Over the past two decades, numerous studies conducted in LULC have investigated various areas of the field of LULC. However, the assemblage of information is missing for some aspects. Therefore, to provide coherent guidance, a literature review to scrutinize and evaluate many studies in particular topical areas is employed. This research study collected approximately four hundred research articles and investigated five (5) areas of interest, including (1) LULC definitions; (2) classification systems used to classify LULC globally; (3) direct and indirect changes of meta-studies associated with LULC; (4) challenges associated with LULC; and (5) LULC knowledge gaps. The synthesis revealed that LULC definitions carried vital terms, and classification systems for LULC are at the national, regional, and global scales. Most meta-studies for LULC were in the categories of direct and indirect land changes. Additionally, the analysis showed significant areas of LULC more »
- Award ID(s):
- 1735235
- Publication Date:
- NSF-PAR ID:
- 10350851
- Journal Name:
- Land
- Volume:
- 10
- Issue:
- 9
- Page Range or eLocation-ID:
- 994
- ISSN:
- 2073-445X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that ‘adversely’ affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. Methods We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose–response relationship between exposure level and the magnitude of a coral’s response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. Review findings After critical appraisal of over 15,000 records, our systematic review of corals’ responses to sediment identified 86 studies to bemore »
-
Background There is increased interest in using artificial intelligence (AI) to provide participation-focused pediatric re/habilitation. Existing reviews on the use of AI in participation-focused pediatric re/habilitation focus on interventions and do not screen articles based on their definition of participation. AI-based assessments may help reduce provider burden and can support operationalization of the construct under investigation. To extend knowledge of the landscape on AI use in participation-focused pediatric re/habilitation, a scoping review on AI-based participation-focused assessments is needed. Objective To understand how the construct of participation is captured and operationalized in pediatric re/habilitation using AI. Methods We conducted a scoping review of literature published in Pubmed, PsycInfo, ERIC, CINAHL, IEEE Xplore, ACM Digital Library, ProQuest Dissertation and Theses, ACL Anthology, AAAI Digital Library, and Google Scholar. Documents were screened by 2–3 independent researchers following a systematic procedure and using the following inclusion criteria: (1) focuses on capturing participation using AI; (2) includes data on children and/or youth with a congenital or acquired disability; and (3) published in English. Data from included studies were extracted [e.g., demographics, type(s) of AI used], summarized, and sorted into categories of participation-related constructs. Results Twenty one out of 3,406 documents were included. Included assessment approachesmore »
-
Abstract Amplified rates of urban convective systems pose a severe peril to the life and property of the inhabitants over urban regions, requiring a reliable urban weather forecasting system. However, the city scale's accurate rainfall forecast has constantly been a challenge, as they are significantly affected by land use/ land cover changes (LULCC). Therefore, an attempt has been made to improve the forecast of the severe convective event by employing the comprehensive urban LULC map using Local Climate Zone (LCZ) classification from the World Urban Database and Access Portal Tools (WUDAPT) over the tropical city of Bhubaneswar in the eastern coast of India. These LCZs denote specific land cover classes based on urban morphology characteristics. It can be used in the Advanced Research version of the Weather Research and Forecasting (ARW) model, which also encapsulates the Building Effect Parameterization (BEP) scheme. The BEP scheme considers the buildings' 3D structure and allows complex land–atmosphere interaction for an urban area. The temple city Bhubaneswar, the capital of eastern state Odisha, possesses significant rapid urbanization during the recent decade. The LCZs are generated at 500 m grids using supervised classification and are ingested into the ARW model. Two different LULC dataset, i.e., Moderate Resolutionmore »
-
Land-use and land-cover (LULC) change is a primary driver of terrestrial carbon release, often through the conversion of forest into agriculture or expansion of urban areas. Classification schemes are a key component of landscape analyses. This study creates a novel LULC classification scheme by incorporating ecological data to redefine classes of an existing LULC classification based on variation in above-ground tree carbon. A tree inventory was conducted for 531 plots within a subbasin of the Tampa Bay Watershed, Florida, USA. Above-ground tree carbon was estimated using the i-Tree model. Plots were classified using the Florida Land Use Cover Classification System. Mean quantities of above-ground tree carbon, by class, were tested for statistical differences. A reclassification was conducted based on these differences. Sub-classes within a given “land cover” class were similar for six of the seven classes. Significant differences were found within the “Wetlands” class based on vegetation cover, forming two distinct groups: “Forested Wetlands” and “Non-forested and Mangrove Wetlands”. The urban “land use” class showed differences between “Residential” and “Non-residential” sub-classes, forming two new classes. LULC classifications can sometimes aggregate areas perceived as similar that are in fact distinct regarding ecological variables. These aggregations can obscure the true variation inmore »