skip to main content


Title: TOI-3757 b: A Low-density Gas Giant Orbiting a Solar-metallicity M Dwarf
Abstract We present the discovery of a new Jovian-sized planet, TOI-3757 b, the lowest-density transiting planet known to orbit an M dwarf (M0V). This planet was discovered around a solar-metallicity M dwarf, using Transiting Exoplanet Survey Satellite photometry and confirmed with precise radial velocities from the Habitable-zone Planet Finder (HPF) and NEID. With a planetary radius of 12.0 − 0.5 + 0.4 R ⊕ and mass of 85.3 − 8.7 + 8.8 M ⊕ , not only does this object add to the small sample of gas giants (∼10) around M dwarfs, but also its low density ( ρ = 0.27 − 0.04 + 0.05 g cm −3 ) provides an opportunity to test theories of planet formation. We present two hypotheses to explain its low density; first, we posit that the low metallicity of its stellar host (∼0.3 dex lower than the median metallicity of M dwarfs hosting gas giants) could have played a role in the delayed formation of a solid core massive enough to initiate runaway accretion. Second, using the eccentricity estimate of 0.14 ± 0.06, we determine it is also plausible for tidal heating to at least partially be responsible for inflating the radius of TOI-3757b b. The low density and large scale height of TOI-3757 b makes it an excellent target for transmission spectroscopy studies of atmospheric escape and composition (transmission spectroscopy measurement of ∼ 190). We use HPF to perform transmission spectroscopy of TOI-3757 b using the helium 10830 Å line. Doing this, we place an upper limit of 6.9% (with 90% confidence) on the maximum depth of the absorption from the metastable transition of He at ∼10830 Å, which can help constraint the atmospheric mass-loss rate in this energy-limited regime.  more » « less
Award ID(s):
2108493 2108801 2108512 1909506
NSF-PAR ID:
10351061
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
3
ISSN:
0004-6256
Page Range / eLocation ID:
81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution. 
    more » « less
  2. Abstract We confirm the planetary nature of two gas giants discovered by the Transiting Exoplanet Survey Satellite to transit M dwarfs. TOI-3714 ( V = 15.24, J = 11.74) is an M2 dwarf hosting a hot Jupiter ( M p = 0.70 ± 0.03 M J and R p = 1.01 ± 0.03 R J ) on an orbital period of 2.154849 ± 0.000001 days with a resolved white dwarf companion. TOI-3629 ( V = 14.63, J = 11.42) is an M1 dwarf hosting a hot Jupiter ( M p = 0.26 ± 0.02 M J and R p =0.74 ± 0.02 R J ) on an orbital period of 3.936551 − 0.000006 + 0.000005 days. We characterize each transiting companion using a combination of ground-based and space-based photometry, speckle imaging, and high-precision velocimetry from the Habitable-zone Planet Finder and the NEID spectrographs. With the discovery of these two systems, there are now nine M dwarfs known to host transiting hot Jupiters. Among this population, TOI-3714 b ( T eq = 750 ± 20 K and TSM = 98 ± 7) and TOI-3629 b ( T eq = 690 ± 20 K and TSM = 80 ± 9) are warm gas giants amenable to additional characterization with transmission spectroscopy to probe atmospheric chemistry and, for TOI-3714, obliquity measurements to probe formation scenarios. 
    more » « less
  3. Abstract

    Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of14.953.92+4.10M, and a density ofρ=0.610.17+0.18g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

     
    more » « less
  4. Abstract

    We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015M. Its planetary radius is 1.03 ± 0.03RJ, while the mass is 1.08 ± 0.06MJ. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.

     
    more » « less
  5. ABSTRACT

    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.

     
    more » « less