skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiplane light conversion design with physical neural network
We present a physical neural network (PNN) approach towards multiplane light conversion (MPLC) design. PNN performs a full parameter search with flexible optimization pathways and can tune various design attributes as hyperparameters.  more » « less
Award ID(s):
1932858
PAR ID:
10351185
Author(s) / Creator(s):
Date Published:
Journal Name:
Digital Holography and Three-Dimensional Imaging
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A PNN heteroscorpionate ligand facilitates CO-release in univalent tricarbonyl group 7 complexes. 
    more » « less
  2. Abstract Neuromorphic photonics has become one of the research forefronts in photonics, with its benefits in low‐latency signal processing and potential in significant energy consumption reduction when compared with digital electronics. With artificial intelligence (AI) computing accelerators in high demand, one of the high‐impact research goals is to build scalable neuromorphic photonic integrated circuits which can accelerate the computing of AI models at high energy efficiency. A complete neuromorphic photonic computing system comprises seven stacks: materials, devices, circuits, microarchitecture, system architecture, algorithms, and applications. Here, we consider microring resonator (MRR)‐based network designs toward building scalable silicon integrated photonic neural networks (PNN), and variations of MRR resonance wavelength from the fabrication process and their impact on PNN scalability. Further, post‐fabrication processing using organic photochromic layers over the silicon platform is shown to be effective for trimming MRR resonance wavelength variation, which can significantly reduce energy consumption from the MRR‐based PNN configuration. Post‐fabrication processing with photochromic materials to compensate for the variation in MRR fabrication will allow a scalable silicon system on a chip without sacrificing today's performance metrics, which will be critical for the commercial viability and volume production of large‐scale silicon photonic circuits. 
    more » « less
  3. null (Ed.)
    Describimos la composición de especies de aves del Parque Nacional Natural (PNN) Chingaza y su zona de amortiguación, a partir de la revisión de 10 estudios ornitológicos, trabajo de campo entre 2008–2017 y la expedición Colombia Bio en 2018. Reportarmos para el PNN Chingaza y su zona de amortiguación un total de 531 especies, agrupadas en 339 géneros y 57 familias. Seis especies presentes en el parque son endémicas de Colombia, 14 casi endémicas, 1 en peligro crítico, 6 en peligro, 4 vulnerables, 3 casi amenazadas y 37 migratorias. Esta lista incluye 149 especies adicionales a la información previamente conocida por datos publicados y colecciones ornitológicas. Adicionalmente, generamos códigos de barras genéticos, con base en secuencias del gen mitocondrial COI, para 74 especies y presentamos los primeros registros genéticos de Colombia en la plataforma para códigos de barra genéticos Barcode of Life Datasystems (BOLD) para Dysithamnus leucostictus, Chamaeza turdina, Rupicola peruvianus, Atlapetes semirufus, Euphonia mesochrysa y Chlorospingus flavopectus olsoni.  El presente listado es una herramienta para incentivar el estudio y conservación de las aves en este sector de la Cordillera Oriental colombiana. 
    more » « less
  4. Abstract A pincer ligand composed of a pyridine with ortho positions substituted by a bulky phosphine arm and a pyrazole arm (PNNH) is installed on nickel(II) to yield the diamagnetic planar complex [(PNNH)NiCl]Cl. The chloride anion can be replaced by BPh4by a metathesis. The acidic pyrazole proton can be removed with LiN(SiMe3)2to yield the square planar neutral molecule (PNN)NiCl. The coordinated chloride can be metathetically replaced by azide to yield diamagnetic (PNN)Ni(N3). To evaluate changing the phosphine donor for a phosphine sulfide, the corresponding pincer ligand SPNNH was synthesized and installed on NiBr2. The reduced steric bulk from the more distant phosphorous keeps both halides coordinated in the paramagnetic molecular species (SPNNH)NiBr2. Several attempts to dehydrobrominate this species result in synthesis and characterization of two unexpected products. One effort revealed that the electrophilic character of P(V) leaves the phosphorus atom in (SPNNH)NiBr2vulnerable to nucleophilic attack, resulting in a P/C cleavage product which was characterized. 
    more » « less
  5. Abstract Photonic neural networks (PNN) are a promising alternative to electronic GPUs to perform machine-learning tasks. The PNNs value proposition originates from i) near-zero energy consumption for vector matrix multiplication once trained, ii) 10-100 ps short interconnect delays, iii) weak required optical nonlinearity to be provided via fJ/bit efficient emerging electrooptic devices. Furthermore, photonic integrated circuits (PIC) offer high data bandwidth at low latency, with competitive footprints and synergies to microelectronics architectures such as foundry access. This talk discusses recent advances in photonic neuromorphic networks and provides a vision for photonic information processors. Details include, 1) a comparison of compute performance technologies with respect to compute efficiency (i.e. MAC/J) and compute speed (i.e. MAC/s), 2) a discussion of photonic neurons, i.e. perceptrons, 3) architectural network implementations, 4) a broadcast-and-weight protocol, 5) nonlinear activation functions provided via electro-optic modulation, and 6) experimental demonstrations of early-stage prototypes. The talk will open up answering why neural networks are of interest, and concludes with an application regime of PNN processors which reside in deep-learning, nonlinear optimization, and real-time processing. 
    more » « less