skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Genome of the Softshell Clam Mya arenaria and the Evolution of Apoptosis
Abstract Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation.  more » « less
Award ID(s):
1638296
PAR ID:
10351218
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Schaack, Sarah
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
10
ISSN:
1759-6653
Page Range / eLocation ID:
1681 to 1693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. <bold>Abstract</bold> Mitochondrial tRNA gene loss and cytosolic tRNA import to mitochondria are two common phenomena in mitochondrial biology, but their importance is often under-appreciated in animals. This is because most bilaterally symmetrical animals (Bilateria) encode a complete set of tRNAs needed for mitochondrial translation. By contrast, studies of mitochondrial genomes in non-bilaterian animals have shown a reduced tRNA gene content in several lineages, necessitating tRNA import. Interestingly, in most of these lineages tRNA gene content appears to be set early in the evolution of the group and conserved thereafter. Here we demonstrate that Clade B of Haplosclerid Sponges (CBHS) represent an exception to this pattern. We determined mt-genome sequences for eight species from this group and analyzed them with six that had been previously available. In addition, we determined mt-genome sequences for two species of haploslerid sponges outside the CBHS and used them with eight previously available sequences as outgroups. We found that tRNA gene content varied widely among CBHS species: from three in an undescribedHaliclonaspecies (Haliclona sp. TLT785) to 25 inXestospongia mutaandX. testudinaria. Furthermore, we found that all CBHS species outside the genusXestospongialackedatp9, while some also lackedatp8. Analysis of nuclear sequences fromNiphates digitalisrevealed that bothatp8andatp9had transferred to the nuclear genome, while the absence of mt-tRNA genes represented their genuine loss. Overall, CBHS can be a useful animal system to study mt-tRNA genes loss, mitochondrial import of cytosolic tRNA, and the impact of both of these processes on mitochondrial evolution. Significance statementIt is generally believed that the gene content is stable in animal mitochondrial (mt) DNA. Indeed, mtDNA in most bilaterally symmetrical animals encompasses a conserved set of 37 genes coding for 13 proteins, two rRNAs and 22 tRNAs. By contrast, mtDNA in non-bilaterian animals shows more variation in mt gene content, in particular in the number of tRNA genes. However, most of this variation occurs between major non-bilaterian lineages. Here we demonstrate that a group of demosponges called Clade B of Haplosclerid Sponges (CBHS) represents a fascinating exception to this pattern, with species experiencing recurrent losses of up to 22 mt-tRNA genes. We argue that this group constitutes a promising system to investigate the effects of tRNA gene loss on evolution of mt-genomes as well as mitochondrial tRNA import machinery. 
    more » « less
  2. Abstract Mutations in theTP53tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specificTP53missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position—R273C vs. R273H—has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors. 
    more » « less
  3. Basic helix–loop–helix (bHLH) proteins are one of the largest families of transcription factor (TF) in eukaryotes, and ~30% of all flowering plants’ bHLH TFs contain the aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain at variable distances C-terminal from the bHLH. However, the evolutionary history and functional consequences of the bHLH/ACT-like domain association remain unknown. Here, we show that this domain association is unique to the plantae kingdom with green algae (chlorophytes) harboring a small number of bHLH genes with variable frequency of ACT-like domain’s presence. bHLH-associated ACT-like domains form a monophyletic group, indicating a common origin. Indeed, phylogenetic analysis results suggest that the association of ACT-like and bHLH domains occurred early in Plantae by recruitment of an ACT-like domain in a common ancestor with widely distributed ACT DOMAIN REPEAT ( ACR ) genes by an ancestral bHLH gene. We determined the functional significance of this association by showing that Chlamydomonas reinhardtii ACT-like domains mediate homodimer formation and negatively affect DNA binding of the associated bHLH domains. We show that, while ACT-like domains have experienced faster selection than the associated bHLH domain, their rates of evolution are strongly and positively correlated, suggesting that the evolution of the ACT-like domains was constrained by the bHLH domains. This study proposes an evolutionary trajectory for the association of ACT-like and bHLH domains with the experimental characterization of the functional consequence in the regulation of plant-specific processes, highlighting the impacts of functional domain coevolution. 
    more » « less
  4. Valverde, Selene Fernández (Ed.)
    Abstract Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian–bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages. 
    more » « less
  5. Abstract Gene duplication is a fundamental part of evolutionary innovation. While single-gene duplications frequently exhibit asymmetric evolutionary rates between paralogs, the extent to which this applies to multi-gene duplications remains unclear. In this study, we investigate the role of genetic context in shaping evolutionary divergence within multi-gene duplications, leveraging microsynteny to differentiate source and target copies. Using a dataset of 193 mammalian genome assemblies and a bird outgroup, we systematically analyze patterns of sequence divergence between duplicated genes and reference orthologs. We find that target copies, those relocated to new genomic environments, exhibit elevated evolutionary rates compared to source copies in the ancestral location. This asymmetry is influenced by the distance between copies and the size of the target copy. We also demonstrate that the polarization of rate asymmetry in paralogs, the “choice” of the slowly evolving copy, is biased towards collective, block-wise polarization in multi-gene duplications. Our findings highlight the importance of genetic context in modulating post-duplication divergence, where differences in cis-regulatory elements and co-expressed gene clusters between source and target copies may be responsible. This study presents a large-scale test of asymmetric evolution in multi-gene duplications, offering new insight into how genome architecture shapes functional diversification of paralogs. Significance statementAfter a gene is duplicated, reduced selective constraints can lead the two copies to rapidly diverge, with one copy often evolving faster and occasionally gaining a new function. We quantify the influence of genetic context in choosing which copy of a duplicated gene has an elevated substitution rate. In a representative dataset of 193 mammalian genomes, we found strong evidence that gene copies pasted into new genomic locations tend to evolve faster than the corresponding copies in ancestral locations, suggesting an important role for the regulatory environment. The asymmetry in evolutionary rates of duplicated genes persists even for very large multigenic duplications, up to the scale of megabases, indicating that regulatory interactions frequently reach farther than previously thought. 
    more » « less