We report on the experimental observation of non-resonant, second-order optical sum-frequency generation (SFG) in five different atomic and molecular gases. The measured signal is attributed to a SFG process by characterizing its intensity scaling and its polarization behavior. We show that the electric quadrupole mechanism cannot explain the observed trends and suggest a mechanism based on symmetry breaking along the incident beam path arising from laser-induced species ground state number density gradients. Our results demonstrate that the SFG is about four orders of magnitude stronger than the third-harmonic generation (THG) and independent from any externally applied electric fields. These features make this method suitable for gas number density measurements at the picosecond time scale in reactive flows and plasmas.
more »
« less
Choose your own adventure: Picosecond or broadband vibrational sum-frequency generation spectroscopy
Vibrational sum-frequency generation (VSFG) spectroscopy is a method capable of measuring chemical structure and dynamics within the interfacial region between two bulk phases. At the core of every experimental system is a laser source that influences the experimental capabilities of the VSFG spectrometer. In this article, we discuss the differences between VSFG spectrometers built with picosecond and broadband laser sources as it will impact everything from material costs, experimental build time, experimental capabilities, and more. A focus is placed on the accessibility of the two different SFG systems to newcomers in the SFG field and provides a resource for laboratories considering incorporating VSFG spectroscopy into their research programs. This Tutorial provides a model decision tree to aid newcomers when determining whether the picosecond or femtosecond laser system is sufficient for their research program and navigates through it for a few specific scenarios.
more »
« less
- PAR ID:
- 10351242
- Date Published:
- Journal Name:
- Biointerphases
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1934-8630
- Page Range / eLocation ID:
- 031201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonlinear, four-wave mixing vibrational spectroscopies are commonly used to probe electron–vibration coupling in isotropic media. Most of these methods rely on infrared and/or Raman transitions, but methods involving hyper-Raman transitions are also possible. Hyper difference frequency generation (HDFG) spectroscopy is an underdeveloped four-wave mixing vibrational spectroscopy based upon both infrared absorption and hyper-Raman scattering transitions. Despite several experimental reports on HDFG, its spectroscopic properties have not been fully explored. To this end, we investigate the selection rules and behavior of HDFG spectroscopy as an upconverted infrared spectroscopy and as a probe of vibronic coupling in molecular systems. We discuss the similarities between HDFG, a four-wave mixing technique, and vibrational sum frequency generation (vSFG) spectroscopy, a three-wave mixing technique. vSFG and HDFG appear to provide similar output intensities, making HDFG feasible for vSFG practitioners. HDFG is shown to be a sensitive probe of vibronic coupling in bulk systems and provides an alternative method to investigate electronic-nuclear coordinate correlations.more » « less
-
Sum frequency generation (SFG) necessitates both noncentrosymmetry and coherence over multiple length scales. These requirements make vibrational SFG spectroscopy capable of probing structural information of noncentrosymmetric organic crystals interspersed in polymeric matrices and their three-dimensional spatial distributions within the matrices without spectral interferences from the amorphous components. However, this analysis is not as straightforward as simple vibrational spectroscopy or scattering experiments; it requires knowing the molecular hyperpolarizability of SFG-active vibrational modes and their interplay within the coherence length. This study demonstrates how density function theory (DFT) calculations can be used to construct the molecular hyperpolarizability of a model system and combine it with the SFG theory to predict the polarization and azimuth angle dependences of SFG intensities. A model system with short peptide chains mimicking β-sheet domains in Bombyx mori silk was chosen. SFG signals of the amide-I, II, III, and A bands and one of the CH deformation modes were simulated and compared with the experimental results and the predictions from the group theory. The SFG features of amide-I and A bands of antiparallel β-sheet could be explained with DFT-based theoretical calculations. Although vibrational coupling with neighboring groups breaks the symmetry of the D2 point group, the group theory approach and DFT calculations gave similar results for the amide-I mode. The DFT calculation results for amide-II did not match with experimental data, which suggested vibrational coupling within a larger crystalline domain may dominate the SFG spectral features of these modes. This methodology can be applied to the structural analysis of other biopolymers.more » « less
-
null (Ed.)In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.more » « less
-
Sub-picosecond timing jitter between optically synchronized femtosecond and picosecond laser systemsAbstract Synchronized optical pulses are widely used. We report here characterization and measurement of synchronized femtosecond and picosecond pulses from a Ti:Sapphire laser (nominally 800 nm) and a Nd:YAG laser (1064 nm), respectively. Synchronization is achieved by utilizing soliton self-frequency shift in a photonic-crystal fiber that allows the 800 nm femtosecond oscillator to seed the third-harmonic generation (355 nm) of picosecond regenerative amplifier. The relative timing jitter between the amplified femtosecond and the third-harmonic generation of picosecond pulses is (710 ± 160) fs, which is only (1.17 ± 0.26)% of the picosecond pulse duration. This work paves way for applications in stimulated Raman scattering spectroscopy and amplification.more » « less
An official website of the United States government

