skip to main content

This content will become publicly available on June 17, 2023

Title: Modeling Stellar Surface Features on a Subgiant Star with an M-dwarf Companion
Abstract Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot ( STSP ) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star ( T eff = 5593 ± 27 K, R ⋆ = 1.98 ± 0.05 R ⊙ ) with an M-dwarf companion ( M ⋆ = 0.214 ± 0.006 M ⊙ ). STSP uses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential more » rotation. The minimum fractional spotted area of KOI-340's primary is 2 − 2 + 12 % , while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astronomical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Our understanding of the impact of magnetic activity on stellar evolution continues to unfold. This impact is seen in sub-subgiant stars, defined to be stars that sit below the subgiant branch and red of the main sequence in a cluster color–magnitude diagram. Here we focus on S1063, a prototypical sub-subgiant in open cluster M67. We use a novel technique combining a two-temperature spectral decomposition and light-curve analysis to constrain starspot properties over a multiyear time frame. Using a high-resolution near-infrared IGRINS spectrum and photometric data from K2 and ASAS-SN, we find a projected spot filling factor of 32% ± 7% with a spot temperature of 4000 ± 200 K. This value anchors the variability seen in the light curve, indicating the spot filling factor of S1063 ranged from 20% to 45% over a four-year time period with an average spot filling factor of 30%. These values are generally lower than those determined from photometric model comparisons but still indicate that S1063, and likely other sub-subgiants, are magnetically active spotted stars. We find observational and theoretical comparisons of spotted stars are nuanced due to the projected spot coverage impacting estimates of the surface-averaged effective temperature. The starspot properties found heremore »are similar to those found in RS CVn systems, supporting classifying sub-subgiants as another type of active giant star binary system. This technique opens the possibility of characterizing the surface conditions of many more spotted stars than previous methods, allowing for larger future studies to test theoretical models of magnetically active stars.

    « less
  2. Abstract

    We present a study of the variation timescales of the chromospheric activity indicator Hαon a sample of 13 fully convective, active mid-to-late M stars with masses between 0.1 and 0.3 solar masses. Our goal was to determine the dominant variability timescale and, by inference, a possible mechanism responsible for the variation. We gathered 10 or more high-resolution spectra each of 10 stars using the TRES spectrograph at times chosen to span all phases of stellar rotation, as determined from photometric data from the MEarth Observatories. All stars varied in their Hαemission. For nine of these stars, we found no correlation between Hαand rotational phase, indicating that constant emission from fixed magnetic structures, such as star spots and plage, are unlikely to be the dominant source of Hαemission variability. In contrast, one star, G 7–34, shows a clear relationship between Hαand stellar rotational phase. Intriguingly, we found that this star is a member of the AB Doradus moving group and hence has the young age of 149 Myr. High-cadence spectroscopic observations of three additional stars revealed that they are variable on timescales ranging from 20 to 45 minutes, which we posit may be due to flaring behavior. For one star,more »GJ 1111, simultaneous TESS photometry and spectroscopic monitoring show an increase in Hαemission with increased photometric brightness. We conclude that low-energy flares are able to produce variation in Hαon the timescales we observe and thus may be the dominant source of Hαvariability on active fully convective M dwarfs.

    « less
  3. Abstract

    We explore the fascinating eclipses and dynamics of the compact hierarchical triple-star system KOI-126 (KIC 5897826). This system is composed of a pair of M-dwarf stars (KOI-126 B and C) in a 1.74 day orbit that revolve around an F star (KOI-126 A) every 34 days. Complex eclipse shapes are created as the M stars transit the F star, due to two effects: (1) the duration of the eclipse is a significant fraction of the M-star orbital period, so the prograde or retrograde motion of the M stars in their orbit lead to unusually short or long duration eclipses; (2) due to 3-body dynamics, the M-star orbit precesses with an astonishingly quick timescale of 1.74 yr for the periastron (apsidal) precession, and 2.73 yr for the inclination and nodal angle precession. Using the full Kepler data set, supplemented with ground-based photometry, plus 29 radial velocity measurements that span 6 yr, our photodynamical modeling yields masses ofMA= 1.2713 ± 0.0047M(0.37%),MB= 0.23529 ± 0.00062M(0.26%), andMC= 0.20739 ± 0.00055M(0.27%) and radii ofRA= 1.9984 ± 0.0027R(0.14%),RB= 0.25504 ± 0.00076R(0.3%), andRC= 0.23196 ± 0.00069R(0.3%). We also estimate the apsidal motion constant of the M dwarfs, a parameter that characterizes the internal mass distribution. Althoughmore »it is not particularly precise, we measure a mean apsidal motion constant,k2¯, of0.0460.028+0.046, which is approximately 2σlower than the theoretical model prediction of 0.150. We explore possible causes for this discrepancy.

    « less
  4. Our understanding of stellar dynamos has largely been driven by the phenomena we have observed of our own Sun. Yet, as we amass longer-term datasets for an increasing number of stars, it is clear that there is a wide variety of stellar behavior. Here we briefly review observed trends that place key constraints on the fundamental dynamo operation of solar-type stars to fully convective M dwarfs, including: starspot and sunspot patterns, various magnetism-rotation correlations, and mean field flows such as differential rotation and meridional circulation. We also comment on the current insight that simulations of dynamo action and flux emergence lend to our working knowledge of stellar dynamo theory. While the growing landscape of both observations and simulations of stellar magnetic activity work in tandem to decipher dynamo action, there are still many puzzles that we have yet to fully understand.

    We measure star-spot filling fractions for 240 stars in the Pleiades and M67 open star clusters using APOGEE high-resolution H-band spectra. For this work, we developed a modified spectroscopic pipeline which solves for star-spot filling fraction and star-spot temperature contrast. We exclude binary stars, finding that the large majority of binaries in these clusters (80 per cent) can be identified from Gaia DR3 and APOGEE criteria – important for field star applications. Our data agree well with independent activity proxies, indicating that this technique recovers real star-spot signals. In the Pleiades, filling fractions saturate at a mean level of 0.248 ± 0.005 for active stars with a decline at slower rotation; we present fitting functions as a function of Rossby number. In M67, we recover low mean filling fractions of 0.030 ± 0.008 and 0.003 ± 0.002 for main sequence GK stars and evolved red giants, respectively, confirming that the technique does not produce spurious spot signals in inactive stars. Star-spots also modify the derived spectroscopic effective temperatures and convective overturn time-scales. Effective temperatures for active stars are offset from inactive ones by −109 ± 11 K, in agreement with the Pecaut & Mamajek empirical scale. Star-spot filling fractions at the level measured in active stars changes their inferred overturn time-scale,more »which biases the derived threshold for saturation. Finally, we identify a population of stars statistically discrepant from mean activity–Rossby relations and present evidence that these are genuine departures from a Rossby scaling. Our technique is applicable to the full APOGEE catalogue, with broad applications to stellar, galactic, and exoplanetary astrophysics.

    « less