Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends.
more »
« less
Hubble Space Telescope Observations of NGC 253 Dwarf Satellites: Three Ultra-faint Dwarf Galaxies*
Abstract We present deep Hubble Space Telescope (HST) imaging of five faint dwarf galaxies associated with the nearby spiral NGC 253 (D ≈ 3.5 Mpc). Three of these are newly discovered dwarf galaxies, while all five were found in the Panoramic Imaging Survey of Centaurus and Sculptor, a Magellan+Megacam survey to identify faint dwarfs and other substructures in resolved stellar light around massive galaxies outside of the Local Group. Our HST data reach ≳3 magnitudes below the tip of the red giant branch for each dwarf, allowing us to derive their distances, structural parameters, and luminosities. All five systems contain mostly old, metal-poor stellar populations (age ∼12 Gyr, [M/H] ≲ −1.5) and have sizes ( r h ∼ 110–3000 pc) and luminosities ( M V ∼ −7 to −12 mag) largely consistent with Local Group dwarfs. The three new NGC 253 satellites are among the faintest systems discovered beyond the Local Group. We also use archival H i data to place limits on the gas content of our discoveries. Deep imaging surveys such as our program around NGC 253 promise to elucidate the faint end of the satellite luminosity function and its scatter across a range of galaxy masses, morphologies, and environments in the decade to come.
more »
« less
- Award ID(s):
- 1814208
- PAR ID:
- 10351471
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 77
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The faint and ultrafaint dwarf galaxies in the Local Group form the observational bedrock upon which our understanding of small-scale cosmology rests. In order to understand whether this insight generalizes, it is imperative to use resolved-star techniques to discover similarly faint satellites in nearby galaxy groups. We describe our search for ultrafaint galaxies in the M81 group using deep ground-based resolved-star data sets from Subaru’s Hyper Suprime-Cam. We present one new ultrafaint dwarf galaxy in the M81 group and identify five additional extremely low surface brightness candidate ultrafaint dwarfs that reach deep into the ultrafaint regime toMV∼ − 6 (similar to current limits for Andromeda satellites). These candidates’ luminosities and sizes are similar to known Local Group dwarf galaxies Tucana B, Canes Venatici I, Hercules, and Boötes I. Most of these candidates are likely to be real, based on tests of our techniques on blank fields. Intriguingly, all of these candidates are spatially clustered around NGC 3077, which is itself an M81 group satellite in an advanced state of tidal disruption. This is somewhat surprising, as M81 itself and its largest satellite M82 are both substantially more massive than NGC 3077 and, by virtue of their greater masses, would have been expected to host as many or more ultrafaint candidates. These results lend considerable support to the idea that satellites of satellites are an important contribution to the growth of satellite populations around Milky Way–mass galaxies.more » « less
-
The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a ̃3 deg2 area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of ̃150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of 11 out of the 13 candidate dwarf galaxies identified around Cen A and presented in Crnojević et al. 2016a: seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities, and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the ̃60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of M V ̃ -15 and shows evidence for a metallicity gradient along its length. Using the total sample of 11 dwarf satellites discovered by the PISCeS survey, as well as 13 brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of M V ̃ -8, which has a slope of -1.14 ± 0.17, comparable to that seen in the Local Group and in other nearby groups of galaxies.more » « less
-
Abstract We present results from an optical search for Local Group dwarf galaxy candidates associated with the Ultra-Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen survey. The ALFALFA UCHVCs are isolated, compact Hiclouds with projected sizes, velocities, and estimated Himasses that suggest they may be nearby dwarf galaxies, but that have no clear counterpart in existing optical survey data. We observed 26 UCHVCs with the WIYN 3.5 m telescope and One Degree Imager (ODI) in two broadband filters and searched the images for resolved stars with properties that match those of stars in typical dwarf galaxies at distances <2.5 Mpc. We identify one promising dwarf galaxy candidate at a distance of ∼570 kpc associated with the UCHVC AGC 268071, and five other candidates that may deserve additional follow-up. We carry out a detailed analysis of ODI imaging of a UCHVC that is close in both projected distance and radial velocity to the outer-halo Milky Way globular cluster Pal 3. We also use our improved detection methods to reanalyze images of five UCHVCs that were found to have possible optical counterparts during the first phase of the project, and confirm the detection of a possible stellar counterpart to the UCHVC AGC 249525 at an estimated distance of ∼2 Mpc. We compare the optical and Hiproperties of the dwarf galaxy candidates to the results from recent theoretical simulations that model satellite galaxy populations in group environments, as well as to the observed properties of galaxies in and around the Local Group.more » « less
-
The lowest luminosity ([Formula: see text] L[Formula: see text]) Milky Way satellite galaxies represent the extreme lower limit of the galaxy luminosity function. These ultra-faint dwarfs are the oldest, most dark matter–dominated, most metal-poor, and least chemically evolved stellar systems known. They therefore provide unique windows into the formation of the first galaxies and the behavior of dark matter on small scales. In this review, we summarize the discovery of ultra-faint dwarfs in the Sloan Digital Sky Survey in 2005 and the subsequent observational and theoretical progress in understanding their nature and origin. We describe their stellar kinematics, chemical abundance patterns, structural properties, stellar populations, orbits, and luminosity function, as well as what can be learned from each type of measurement. We conclude the following: ▪ In most cases, the stellar velocity dispersions of ultra-faint dwarfs are robust against systematic uncertainties such as binary stars and foreground contamination. ▪ The chemical abundance patterns of stars in ultra-faint dwarfs require two sources of r-process elements, one of which can likely be attributed to neutron star mergers. ▪ Even under conservative assumptions, only a small fraction of ultra-faint dwarfs may have suffered significant tidal stripping of their stellar components. ▪ Determining the properties of the faintest dwarfs out to the virial radius of the Milky Way will require very large investments of observing time with future telescopes. Finally, we offer a look forward at the observations that will be possible with future facilities as the push toward a complete census of the Local Group dwarf galaxy population continues.more » « less