skip to main content

This content will become publicly available on January 1, 2023

Title: An investigation into the chemistry of HONO in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda
Abstract. Here we present measurement results of temporal distributions of nitrous acid (HONO) along with several chemical and meteorologicalparameters during the spring and the late summer of 2019 at Tudor Hill Marine Atmospheric Observatory in Bermuda. Large temporal variations inHONO concentration were controlled by several factors including local pollutant emissions, air mass interaction with the island, andlong-range atmospheric transport of HONO precursors. In polluted plumes emitted from local traffic, power plant, and cruise ship emissions,HONO and nitrogen oxides (NOx) existed at substantial levels (up to 278 pptv and 48 ppbv, respectively),and NOx-related reactions played dominant roles in daytime formation of HONO. The lowest concentration of HONO wasobserved in marine air, with median concentrations at ∼ 3 pptv around solar noon and < 1 pptv during thenighttime. Considerably higher levels of HONO were observed during the day in the low-NOx island-influenced air([NO2] < 1 ppbv), with a median HONO concentration of ∼ 17 pptv. HONO mixing ratios exhibiteddistinct diurnal cycles that peaked around solar noon and were lowest before sunrise, indicating the importance of photochemical processes forHONO formation. In clean marine air, NOx-related reactions contribute to ∼ 21 % of the daytime HONOsource, and the photolysis of particulate nitrate (pNO3) can account for the missing source assuming a moderate enhancement factorof 29 relative to gaseous nitric more » acid photolysis. In low-NOx island-influenced air, the contribution from bothNOx-related reactions and pNO3 photolysis accounts for only ∼ 48 % of the daytime HONOproduction, and the photochemical processes on surfaces of the island, such as the photolysis of nitric acid on the forest canopy, might contributesignificantly to the daytime HONO production. The concentrations of HONO, NOx, and pNO3 were lowerwhen the site was dominated by the aged marine air in the summer and were higher when the site was dominated by North American air in the spring,reflecting the effects of long-range transport on the reactive nitrogen chemistry in background marine environments. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1826989 1900795
Publication Date:
NSF-PAR ID:
10351475
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
9
Page Range or eLocation-ID:
6327 to 6346
ISSN:
1680-7324
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Nitrogen-containing organic compounds, which may be directly emitted into the atmosphere or which may form via reactions with prevalent reactive nitrogen species (e.g., NH3, NOx, NO3), have important but uncertaineffects on climate and human health. Using gas and liquid chromatographywith soft ionization and high-resolution mass spectrometry, we performed amolecular-level speciation of functionalized organic compounds at a coastal site on the Long Island Sound in summer (during the 2018 Long Island Sound Tropospheric Ozone Study – LISTOS – campaign) and winter. This region often experiences poor air quality due to theemissions of reactive anthropogenic, biogenic, and marine-derived compoundsand their chemical transformation products. We observed a range offunctionalized compounds containing oxygen, nitrogen, and/or sulfur atomsresulting from these direct emissions and chemical transformations,including photochemical and aqueous-phase processing that was more pronounced in summer and winter, respectively. In both summer and winter, nitrogen-containing organic aerosols dominated the observed distribution offunctionalized particle-phase species ionized by our analytical techniques,with 85 % and 68 % of total measured ion abundance containing a nitrogenatom, respectively. Nitrogen-containing particles included reduced nitrogen functional groups (e.g., amines, imines, azoles) and common NOz contributors (e.g., organonitrates). Reduced nitrogen functional groups observed in the particle phase were frequently paired with oxygen-containing groups elsewhere onmore »the molecule, and their prevalence often rivaled that of oxidized nitrogen groups detected by our methods. Supplemental gas-phasemeasurements, collected on adsorptive samplers and analyzed with a novelliquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds are possible contributing precursors to the observed nitrogen-containing particles. Altogether, this work highlights theprevalence of reduced nitrogen-containing compounds in the less-studied northeastern US and potentially in other regions with similar anthropogenic, biogenic, and marine source signatures.« less
  2. Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increasedmore »ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations.« less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmospheric chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional boxmore »model basedon the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2),including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration(RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed thepresence of an interference with the LIF-FAGE measurements of OH that increased with bothambient concentrations of ozone and temperature with an average daytime maximum equivalentOH concentration of approximately 5×106 cm−3. Subtraction of theinterference resulted in measured OH concentrations of approximately4×106 cm−3 (average daytime maximum) that were in better agreement with modelpredictions although the models underestimated the measurements in the evening. The addition ofversions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrationsby approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing thebest agreement with the measured concentrations, predicting maximum daily OH concentrationsto within 30 % of the measured concentrations. Measurements of HO2 concentrationsduring the campaign (approximately a 1×109 cm−3 average daytime maximum)included a fraction of isoprene-based peroxy radicals(HO2*=HO2+αRO2) and were found to agree with modelpredictions to within 10 %–30 %. On average, the measured reactivity was consistent with thatcalculated from measured OH sinks to within 20 %, with modeled oxidation productsaccounting for the missing reactivity, however significant missing reactivity (approximately40 % of the total measured reactivity) was observed on some days.« less
  5. Abstract. Observations of the organic components of the natural aerosol are scarce in Antarctica, which limits our understanding of natural aerosols and their connection to seasonal and spatial patterns of cloud albedo in the region. From November 2015 to December 2016, the ARM West Antarctic Radiation Experiment (AWARE) measured submicron aerosol properties near McMurdo Station at the southern tip of Ross Island. Submicron organic mass (OM), particle number, and cloud condensation nuclei concentrations were higher in summer than other seasons. The measurements included a range of compositions and concentrations that likely reflected both local anthropogenic emissions and natural background sources. We isolated the natural organic components by separating a natural factor and a local combustion factor. The natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that included marine sea spray and seabird emissions contributed 56% OM in summer but only 3% in winter. The natural OM had high hydroxyl group fraction (55%), 6% alkane, and 6% amine group mass, consistent with marine organic composition. In addition, the Fourier transform infrared (FTIR) spectra showed the natural sources of organic aerosol weremore »characterized by amide group absorption, which may be from seabird populations. Carboxylic acid group contributions were high in summer and associated with natural sources, likely forming by secondary reactions.« less