skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Path-Connectivity of Fréchet Spaces of Graphs
We examine topological properties of spaces of paths and graphs mapped to $$\R^d$$ under the Fr\'echet distance. We show that these spaces are path-connected if the map is either continuous or an immersion. If the map is an embedding, we show that the space of paths is path-connected, while the space of graphs only maintains this property in dimensions four or higher.  more » « less
Award ID(s):
2046730 1664858 1854336
PAR ID:
10351571
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Young Researcher's Forum (CG Week)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Frechet distance is often used to measure distances between paths, with applications in areas ranging from map matching to GPS trajectory analysis to hand- writing recognition. More recently, the Frechet distance has been generalized to a distance between two copies of the same graph embedded or immersed in a metric space; this more general setting opens up a wide range of more complex applications in graph analysis. In this paper, we initiate a study of some of the fundamental topological properties of spaces of paths and of graphs mapped to R^n under the Frechet distance, in an effort to lay the theoretical groundwork for understanding how these distances can be used in practice. In particular, we prove whether or not these spaces, and the metric balls therein, are path-connected. 
    more » « less
  2. The Fréchet distance is often used to measure distances between paths, with applications in areas ranging from map matching to GPS trajectory analysis to hand- writing recognition. More recently, the Fréchet distance has been generalized to a distance between two copies of the same graph embedded or immersed in a metric space; this more general setting opens up a wide range of more complex applications in graph analysis. In this paper, we initiate a study of some of the fundamental topological properties of spaces of paths and of graphs mapped to R^n under the Fréchet distance, in an eort to lay the theoretical groundwork for understanding how these distances can be used in practice. In particular, we prove whether or not these spaces, and the metric balls therein, are path-connected. 
    more » « less
  3. In the directed setting, the spaces of directed paths between fixed initial and terminal points are the defining feature for distinguishing different directed spaces. The simplest case is when the space of directed paths is homotopy equivalent to that of a single path; we call this the trivial space of directed paths. Directed spaces that are topologically trivial may have non-trivial spaces of directed paths, which means that information is lost when the direction of these topological spaces is ignored. We define a notion of directed collapsibility in the setting of a directed Euclidean cubical complex using the spaces of directed paths of the underlying directed topological space, relative to an initial or a final vertex. In addition, we give sufficient conditions for a directed Euclidean cubical complex to have a contractible or a connected space of directed paths from a fixed initial vertex. We also give sufficient conditions for the path space between two vertices in a Euclidean cubical complex to be disconnected. Our results have applications to speeding up the verification process of concurrent programming and to understanding partial executions in concurrent programs. 
    more » « less
  4. For graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph. Already in the early 1980s Alekseev observed that if H is connected, then the Max Weight Independent Set problem (MWIS) remains NP-hard in H-free graphs, unless H is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in H-free graphs, where H is any fixed path. If H is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw H, MWIS is polynomial-time solvable in H-free graphs of bounded degree. 
    more » « less
  5. Abstract The sphericalization procedure converts a Euclidean space into a compact sphere. In this note we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, unbounded metric spaces by using conformal deformations that depend only on the distance to the boundary of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but transforms the space into a bounded domain. We will show that if the original metric space is a uniform domain with respect to its completion, then the transformed space is also a uniform domain. 
    more » « less