skip to main content


Title: Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances
Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks.  more » « less
Award ID(s):
1754126
NSF-PAR ID:
10351572
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
4
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. This data set includes phosphate, nitrate and ammonium availability measured using resin exchange strips. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1 Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, and Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99: 438-449. https://doi.org/10.1002/ecy.2100 Shan S, Fisk MC, Fahey TJ. 2018. Contrasting effects of N on rhizosphere processes in two northern hardwood species. Soil Biology and Biochemistry 126: 219-227. https://doi.org/10.1016/j.soilbio.2018.09.007 Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems, https://doi.org/10.1007/s10021-021-00735-4 Gonzales KE, Yanai RD, Fahey TJ, Fisk MC. 2023. Evidence for P limitation in eight northern hardwood stands: Foliar concentrations and resorption by three tree species in a factorial N by P addition experiment. Forest Ecology and Management 529: 120696. https://doi.org/10.1016/j.foreco.2022.120696 Li S, Fisk MC, Yanai RD, Fahey TJ. 2023. Co-limitation of root growth by nitrogen and phosphorus in early successional northern hardwood forest. Ecosystems. https://10.1007/s10021-023-00869-7 
    more » « less
  2. Although temperate forests are generally thought of as N-limited, resource optimization theory predicts that ecosystem productivity should be co-limited by multiple nutrients. These ideas are represented in the Multi-Element Limitation (MEL) model (Rastetter et al. 2012). To test the patterns of resource limitation predicted by MEL, we are conducting nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest (BEF), Hubbard Brook Experimental Forest (HBEF), and Jeffers Brook in the White Mountain National Forest. We are monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. These data can be found in the EDI repository, using the search term "MELNHE" (http://portal.edirepository.org), and through the data catalog on https://hubbardbrook.org, using the same search term. This data package is referenced by the MELNHE datasets, and includes a datatable of site descriptions and a pdf file with the project description, and diagrams of plot configuration. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  4. Abstract

    Tropical dry forests in eastern and southern Africa cover 2.5 × 106km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N <0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.

     
    more » « less
  5. null (Ed.)
    Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. 
    more » « less