skip to main content

This content will become publicly available on February 1, 2023

Title: Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd
Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties more » make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Award ID(s):
2224255 2221789 1944985 1909796
Publication Date:
NSF-PAR ID:
10351648
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
Page Range or eLocation-ID:
112
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limitsmore »on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.« less
  2. ABSTRACT

    Evidence is mounting that recent multiwavelength detections of fast blue optical transients (FBOTs) in star-forming galaxies comprise a new class of transients, whose origin is yet to be understood. We show that hydrogen-rich collapsing stars that launch relativistic jets near the central engine can naturally explain the entire set of FBOT observables. The jet–star interaction forms a mildly relativistic shocked jet (inner cocoon) component, which powers cooling emission that dominates the high velocity optical signal during the first few weeks, with a typical energy of ∼1050–1051 erg. During this time, the cocoon radial energy distribution implies that the optical light curve exhibits a fast decay of $L \,\, \buildrel\propto \over \sim \,\,t^{-2.4}$. After a few weeks, when the velocity of the emitting shell is ∼0.01 c, the cocoon becomes transparent, and the cooling envelope governs the emission. The interaction between the cocoon and the dense circumstellar winds generates synchrotron self-absorbed emission in the radio bands, featuring a steady rise on a month time-scale. After a few months the relativistic outflow decelerates, enters the observer’s line of sight, and powers the peak of the radio light curve, which rapidly decays thereafter. The jet (and the inner cocoon) becomes optically thinmore »to X-rays ∼day after the collapse, allowing X-ray photons to diffuse from the central engine that launched the jet to the observer. Cocoon cooling emission is expected at higher volumetric rates than gamma-ray bursts (GRBs) by a factor of a few, similar to FBOTs. We rule out uncollimated outflows, however, both GRB jets and failed collimated jets are compatible with all observables.

    « less
  3. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curvemore »peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.« less
  4. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; ormore »the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at https://doi.org/10.5281/zenodo.4895112 .« less
  5. Abstract

    We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06cthat carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρCSMR−0.03±0.22up to a break radiusRbr≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρCSMR−2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5Myr−1for an adopted wind velocityvw= 1000 km s−1and shock microphysical parametersϵe= 0.1,ϵB= 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass lossmore »powered by gravity waves and/or interaction with a binary companion.

    « less