skip to main content


Title: Mixed Reality Communication System for Procedural Tasks
We design a volumetric communication system for remote assistance of procedural medical tasks. The system allows a remote expert to spatially guide a local operator using a real-time volumetric representation of the patient. Guidance is provided by voice, virtual hand metaphor, and annotations performed in situ. We include the feedback we received from the medical professionals and early NASA TLX [5] data on the cognitive load of the system.  more » « less
Award ID(s):
2026505 2117656
PAR ID:
10351677
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
AVI 2022: Proceedings of the 2022 International Conference on Advanced Visual Interfaces
Page Range / eLocation ID:
1 to 3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present our work in progress, a real-time mixed reality communication system for remote assistance in medical emergency situations. 3D cameras capture the emergency situation and send volumetric data to a remote expert. The remote expert sees the volumetric scene through mixed reality glasses and guides an operator to the patient. The local operator receives audio and visual guidance augmented onto the mixed reality headset. We compare the mixed reality system against traditional video communication in a user study on a CPR emergency simulation. We evaluate task performance, cognitive load, and user interaction. The results will help to better understand the benefits of using augmented and volumetric information in medical emergency procedures. 
    more » « less
  2. We present our work in progress, a real-time mixed reality communication system for remote assistance in medical emergency situations. 3D cameras capture the emergency situa-tion and send volumetric data to a remote expert. The remote expert sees the volumetric scene through mixed reality glasses and guides an operator at the patient. The local operator receives audio and visual guidance augmented onto the mixed reality headset. We compare the mixed reality system against traditional video communication in a user study on a CPR emergency simulation. We evaluate task performance, cognitive load, and user interaction. The results will help to better understand the benefits of using augmented and volumetric information in medical emergency procedures. 
    more » « less
  3. ABSTRACT Medical procedures are an essential part of healthcare delivery, and the acquisition of procedural skills is a critical component of medical education. Unfortunately, procedural skill is not evenly distributed among medical providers. Skills may vary within departments or institutions, and across geographic regions, depending on the provider’s training and ongoing experience. We present a mixed reality real-time communication system to increase access to procedural skill training and to improve remote emergency assistance. Our system allows a remote expert to guide a local operator through a medical procedure. RGBD cameras capture a volumetric view of the local scene including the patient, the operator, and the medical equipment. The volumetric capture is augmented onto the remote expert’s view to allow the expert to spatially guide the local operator using visual and verbal instructions. We evaluated our mixed reality communication system in a study in which experts teach the ultrasound-guided placement of a central venous catheter (CVC) to students in a simulation setting. The study compares state-of-theart video communication against our system. The results indicate that our system enhances and offers new possibilities for visual communication compared to video teleconference-based training. 
    more » « less
  4. Over the last two years, we built, evaluated, and published a volumetric communication system for volumetric-based training and assistantship of medical personnel. Technical aspects of the system have been published at HICCS conference. In this paper, we discuss a follow-up work: the design and evaluation of a mixed reality real-time communication system for remote assistance during CPR emergencies. Our system allows an expert to guide a first responder, remotely, on how to give first aid. RGBD cameras capture a volumetric view of the local scene including the patient, the first responder, and the environment. The volumetric capture is augmented onto the remote expert's view to spatially guide the first responder using visual and verbal instructions. We evaluate the mixed reality communication system in a research study in which participants face a simulated emergency. The first responder moves the patient to the recovery position and performs chest compressions as well as mouth-to-mask ventilation. Our study compares mixed reality against videoconferencing-based assistance using CPR performance measures, cognitive workload surveys, and semi-structured interviews. We find that more visual communication including gestures and objects is used by the remote expert when assisting in mixed reality compared to videoconferencing. Moreover, the performance and the workload of the first responder during simulation do not differ significantly between the two technologies. 
    more » « less
  5. Augmented reality (AR) has great potential for use in healthcare applications, especially remote medical training and supervision. In this paper, we analyze the usage of an AR communication system to teach a medical procedure, the placement of a central venous catheter (CVC) under ultrasound guidance. We examine various AR communication and collaboration components, including gestural communication, volumetric information, annotations, augmented objects, and augmented screens. We compare how teaching in AR differs from teaching through videoconferencing-based communication. Our results include a detailed medical training steps analysis in which we compare how verbal and visual communication differs between video and AR training. We identify procedural steps in which medical experts give visual instructions utilizing AR components. We examine the change in AR usage and interaction over time and recognize patterns between users. Moreover, AR design recommendations are given based on post-training interviews. 
    more » « less