skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Geometric and topological approaches to shape variation in Ginkgo leaves
Leaf shape is a key plant trait that varies enormously. The range of applications for data on this trait requires frequent methodological development so that researchers have an up-to-date toolkit with which to quantify leaf shape. We generated a dataset of 468 leaves produced by Ginkgo biloba , and 24 fossil leaves produced by evolutionary relatives of extant Ginkgo . We quantified the shape of each leaf by developing a geometric method based on elastic curves and a topological method based on persistent homology. Our geometric method indicates that shape variation in modern leaves is dominated by leaf size, furrow depth and the angle of the two lobes at the leaf base that is also related to leaf width. Our topological method indicates that shape variation in modern leaves is dominated by leaf size and furrow depth. We have applied both methods to modern and fossil material: the methods are complementary, identifying similar primary patterns of variation, but also revealing different aspects of morphological variation. Our topological approach distinguishes long-shoot leaves from short-shoot leaves, both methods indicate that leaf shape influences or is at least related to leaf area, and both could be applied in palaeoclimatic and evolutionary studies of leaf shape.  more » « less
Award ID(s):
1953244
NSF-PAR ID:
10351958
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
8
Issue:
11
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed.

    Methods

    We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs).

    Key Results

    For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85).

    Conclusions

    Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.

     
    more » « less
  2. Premise

    Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitisspp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves.

    Methods

    Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present.

    Results

    We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping.

    Discussion

    Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

     
    more » « less
  3. Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate. 
    more » « less
  4. Tectonically driven physiographic evolution has profound effects on the climate and vegetation of Early Miocene terrestrial ecosystems across eastern Africa, creating habitat heterogeneity. Early hominoids were present on these dynamic landscapes, which likely influenced their evolutionary history. In western Kenya, a series of Early Miocene (ca.19-21Ma) fossiliferous exposures around the now-extinct Tinderet volcano document this history through preservation of hominoid fossils, fossil leaves, tree stump casts, and paleosols. Here, we use multiple proxies to reconstruct the paleoclimate and paleoecology of the fossil site Koru-16. Sedimentological and stratigraphic analysis indicate the landscape was disturbed by periodic eruptions of the volcano followed by intervals of stability, as shown by features of moderate to poorly developed paleosols. Paleoclimate estimates using the paleosol-paleoclimate model (PPM) indicate warm and wet climate conditions. Over 1000 fossil leaves were collected from two stratigraphic intervals. Seventeen morphotypes were identified across both sites, with an unequal distribution of morphotypes. Average leaf size estimate is mesophyll to megaphyll, with mean annual precipitation estimates using leaf physiognomic methods indicate >2000mm/yr. Leaf lifespan reconstructions based on leaf mass per area (MA) proxy indicate the site was predominately evergreen, with few deciduous taxa, with a MA distribution like modern tropical rainforests and tropical seasonal forests in equatorial Africa. Forest density estimates based on fossil tree stump casts indicate an open forest, with density similar to modern tropical forests that support large-bodied primates. Importantly, fossil leaves, tree stump casts, a medium-sized pythonid, a large-bodied hominoid and Proconsul africanus are all found within the same strata, indicating that these early apes lived within the reconstructed Koru-16 ecosystem. Our multi-proxy paleoclimate and paleoecological reconstructions indicate Koru-16 site sampled a very wet and warm climate that supported a tropical seasonal forest to rainforest biome. This likely provided an ideal habitat for hominoids and suggests that forested habitats played a role in the evolution of Early Miocene hominoids. 
    more » « less
  5. Abstract

    Recent work suggests variation in plant growth strategies is governed by a tradeoff in resource acquisition and use, ranging from a rapid resource acquisition strategy to a resource‐conservative strategy. While evidence for this tradeoff has been found in leaves, knowledge of root trait strategies, and whether they reflect adaptive differentiation across environments, is limited. In the greenhouse, we investigated variation in fine root morphology (specific root length and tissue density), chemistry (nitrogen concentration and carbon:nitrogen), and anatomy (root cross‐sectional traits) in populations of 26Helianthusspecies and sisterPhoebanthus tenuifolius. We also compared root trait variation in this study with leaf trait variation previously reported in a parallel study of these populations. Root traits varied widely and exhibited little phylogenetic signal, suggesting high evolutionary lability. Specific root length and root tissue density were weakly negatively correlated, but neither was associated with root nitrogen, providing little support for a single axis of root trait covariation. Correlations between traits measured in the greenhouse and native site characteristics were generally weak, suggesting a variety of equally viable root trait combinations exist within and across environments. However, high root nitrogen was associated with lower xylem vessel number and cross‐sectional area, suggesting a tradeoff between nutrient investment and water transport capacity. This led to correlations between root and leaf traits that were not always consistent with an acquisition–conservation tradeoff at the whole‐plant level. Given that roots must balance acquisition of water and nutrients with functions like anchorage, exudation, and microbial symbioses, the varied evidence for root trait covariation likely reflects the complexity of interacting selection pressures belowground. Similarly, the lack of evidence for a single acquisition–conservation tradeoff at the whole‐plant level likely reflects the vastly different selection pressures shaping roots and leaves, and the resources they are optimized to obtain.

     
    more » « less