skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Particle Acceleration in Magnetic Reconnection with Ad Hoc Pitch-angle Scattering
Abstract Particle acceleration during magnetic reconnection is a long-standing topic in space, solar, and astrophysical plasmas. Recent 3D particle-in-cell simulations of magnetic reconnection show that particles can leave flux ropes due to 3D field-line chaos, allowing particles to access additional acceleration sites, gain more energy through Fermi acceleration, and develop a power-law energy distribution. This 3D effect does not exist in traditional 2D simulations, where particles are artificially confined to magnetic islands due to their restricted motions across field lines. Full 3D simulations, however, are prohibitively expensive for most studies. Here, we attempt to reproduce 3D results in 2D simulations by introducing ad hoc pitch-angle scattering to a small fraction of the particles. We show that scattered particles are able to transport out of 2D islands and achieve more efficient Fermi acceleration, leading to a significant increase of energetic particle flux. We also study how the scattering frequency influences the nonthermal particle spectra. This study helps achieve a complete picture of particle acceleration in magnetic reconnection.  more » « less
Award ID(s):
2109154
PAR ID:
10351959
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate particle acceleration in an MHD-scale system of multiple current sheets by performing 2D and 3D MHD simulations combined with a test particle simulation. The system is unstable for the tearing-mode instability, and magnetic islands are produced by magnetic reconnection. Due to the interaction of magnetic islands, the system relaxes to a turbulent state. The 2D (3D) case both yield −5/3 (− 11/3 and −7/3) power-law spectra for magnetic and velocity fluctuations. Particles are efficiently energized by the generated turbulence, and form a power-law tail with an index of −2.2 and −4.2 in the energy distribution function for the 2D and 3D case, respectively. We find more energetic particles outside magnetic islands than inside. We observe super-diffusion in the 2D (∼ t 2.27 ) and 3D (∼ t 1.2 ) case in the energy space of energetic particles. 
    more » « less
  2. Abstract Understanding plasma dynamics and nonthermal particle acceleration in 3D magnetic reconnection has been a long-standing challenge. In this paper, we explore these problems by performing large-scale fully kinetic simulations of multi-X-line plasmoid reconnection with various parameters in both the weak- and strong-guide-field regimes. In each regime, we have identified its unique 3D dynamics that lead to field-line chaos and efficient acceleration, and we have achieved nonthermal acceleration of both electrons and protons into power-law spectra. The spectral indices agree well with a simple Fermi acceleration theory that includes guide-field dependence. In the low-guide-field regime, the flux rope kink instability governs the 3D dynamics for efficient acceleration. The weak dependence of the spectra on the ion-to-electron mass ratio andβ(≪1) implies that the particles are sufficiently magnetized for Fermi acceleration in our simulations. While both electrons and protons are injected at reconnection exhausts, protons are primarily injected by perpendicular electric fields through Fermi reflections and electrons are injected by a combination of perpendicular and parallel electric fields. The magnetic power spectra agree with in situ magnetotail observations, and the spectral index may reflect a reconnection-driven size distribution of plasmoids instead of the Goldreich–Sridhar vortex cascade. As the guide field becomes stronger, the oblique flux ropes of large sizes capture the main 3D dynamics for efficient acceleration. Intriguingly, the oblique flux ropes can also experience flux rope kink instability, to drive extra 3D dynamics. This work has broad implications for 3D reconnection dynamics and particle acceleration in heliophysics and astrophysics. 
    more » « less
  3. Abstract Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale 3D particle-in-cell simulations of reconnection in magnetically dominated ( σ = 10) pair plasmas to study the energization physics of high-energy particles. We identify an acceleration mechanism that only operates in 3D. For weak guide fields, 3D plasmoids/flux ropes extend along the z -direction of the electric current for a length comparable to their cross-sectional radius. Unlike in 2D simulations, where particles are buried in plasmoids, in 3D we find that a fraction of particles with γ ≳ 3 σ can escape from plasmoids by moving along z , and so they can experience the large-scale fields in the upstream region. These “free” particles preferentially move in z along Speiser-like orbits sampling both sides of the layer and are accelerated linearly in time—their Lorentz factor scales as γ ∝ t , in contrast to γ ∝ t in 2D. The energy gain rate approaches ∼ eE rec c , where E rec ≃ 0.1 B 0 is the reconnection electric field and B 0 the upstream magnetic field. The spectrum of free particles is hard, dN free / d γ ∝ γ − 1.5 , contains ∼20% of the dissipated magnetic energy independently of domain size, and extends up to a cutoff energy scaling linearly with box size. Our results demonstrate that relativistic reconnection in GRB and AGN jets may be a promising mechanism for generating ultra-high-energy cosmic rays. 
    more » « less
  4. Abstract Using 3D particle-in-cell simulation, we characterize energy conversion, as a function of guide magnetic field, in a thin current sheet in semirelativistic plasma, with relativistic electrons and subrelativistic protons. There, magnetic reconnection, the drift-kink instability (DKI), and the flux-rope kink instability all compete and interact in their nonlinear stages to convert magnetic energy to plasma energy. We compare fully 3D simulations with 2D in two different planes to isolate reconnection and DKI effects. In zero guide field, these processes yield distinct energy conversion signatures: ions gain more energy than electrons in 2Dxy(reconnection), while the opposite is true in 2Dyz(DKI), and the 3D result falls in between. The flux-rope instability, which occurs only in 3D, allows more magnetic energy to be released than in 2D, but the rate of energy conversion in 3D tends to be lower. Increasing the guide magnetic field strongly suppresses DKI, and in all cases slows and reduces the overall amount of energy conversion; it also favors electron energization through a process by which energy is first stored in the motional electric field of flux ropes before energizing particles. Understanding the evolution of the energy partition thus provides insight into the role of various plasma processes, and is important for modeling radiation from astrophysical sources such as accreting black holes and their jets. 
    more » « less
  5. null (Ed.)
    Abstract It has been recently shown numerically that there exists an inverse transfer of magnetic energy in decaying, nonhelical, magnetically dominated, magnetohydrodynamic turbulence in 3-dimensions (3D). We suggest that magnetic reconnection is the underlying physical mechanism responsible for this inverse transfer. In the two-dimensional (2D) case, the inverse transfer is easily inferred to be due to smaller magnetic islands merging to form larger ones via reconnection. We find that the scaling behaviour is similar between the 2D and the 3D cases, i.e., the magnetic energy evolves as t−1, and the magnetic power spectrum follows a slope of k−2. We show that on normalizing time by the magnetic reconnection timescale, the evolution curves of the magnetic field in systems with different Lundquist numbers collapse onto one another. Furthermore, transfer function plots show signatures of magnetic reconnection driving the inverse transfer. We also discuss the conserved quantities in the system and show that the behaviour of these quantities is similar between the 2D and 3D simulations, thus making the case that the dynamics in 3D could be approximately explained by what we understand in 2D. Lastly, we also conduct simulations where the magnetic field is subdominant to the flow. Here, too, we find an inverse transfer of magnetic energy in 3D. In these simulations, the magnetic energy evolves as t−1.4 and, interestingly, a dynamo effect is observed. 
    more » « less