skip to main content


Title: Uncertainty and sensitivity analysis for spatial and spectral processing of Pb isotopes in zircon by atom probe tomography
Measuring 207Pb/206Pb ratios by atom probe tomography (APT) has provided new insight into the nanoscale behavior of trace components in zircon, and their relationship to time, temperature and structure. Here, we analyze three APT data sets for a 3.77 Ga zircon from the Beartooth Mountains, USA, and apply systematic ranging approaches to understand the spatial and spectral uncertainties inherent in 207Pb/206Pb analysis by APT. This zircon possesses two, 100% concordant U-Pb analyses by secondary ion mass spectrometry (SIMS), indicative of closed U-Pb systematics on the micron scale since crystallization. APT data sets contain sub-spherical Pb-rich (>0.25% atomic) domains with diameter <15 nm. Broadly consistent Pb-rich regions are defined in applying six different permutations of the two most common cluster identification algorithms. Measured 207Pb/206Pb ratios within Pb-rich domains vary between 0.794±0.15 (±2σ) and 0.715±0.052 depending on the ranging approach, cluster definition protocol and number of clusters interrogated. For the bulk APT data sets, 207Pb/206Pb = 0.353±0.18; this is indistinguishable from the bulk 207Pb/206Pb ratio by SIMS (0.367±0.0037), and statistically distinct from the 207Pb/206Pb ratio within clusters. Bulk and clustered 207Pb/206Pb ratios are consistent with Pb clustering at ~2.8 Ga, during protracted metamorphism and magmatism in the Beartooth Mountains. 10.1002/9781119227250.ch16  more » « less
Award ID(s):
1658823
NSF-PAR ID:
10352132
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Moser, DE; Corfu, F; Darling, J; Reddy, SM; Tait, K
Date Published:
Journal Name:
Geography monograph series
ISSN:
1037-7158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two generations of dikes and sills (earlier granodiorite, later leucogranite) have intruded quartzofeldspathic to semi-pelitic hornfels in the innermost ~200 meters of the southern contact aureole of the Alta stock. Both zircon and monazite are present in the older granodiorite intrusions, and monazite alone is present in the younger leucogranite intrusions, and in biotite-rich reaction selvages formed by hydrothermal contact metamorphism in hornfels adjacent to these dikes and sills. U-Pb dates for zircon (n=532) range from ~38 to 32 Ma, with error on individual measurements of ±1–1.5 Ma, and define a KDE peak at 34.5 Ma. These zircon dates are slightly older than, but consistent with, existing zircon data from the Alta stock (35 to 32 Ma; Stearns et al., 2020), suggesting that the construction of the Alta stock began by emplacement of these granodiorite sills and dikes. Monazite Th-Pb dates (n = 888) range from ~41 to 28 Ma with error on individual measurements of ± 1–1.5 Ma. These dates are complicated by disturbances to the U/Th-Pb systematics by common Pb (Pbc) and excess 206Pb due to 230Th. Dates >38 Ma are disturbed by significant Pbc and do not represent crystallization ages. Dates from the granodiorites range from ~38–32 Ma. In individual samples of granodiorite where the disturbance from excess 206Pb can be rigorously evaluated, the monazite data sets yield concordant 232Th-208Pb and 207Pb/206Pb-corrected dates centered at ~35 Ma, consistent with zircon dates from these same samples. Monazite dates from the leucogranites are younger (<33 Ma), consistent with cross-cutting relationships (leucogranites cross-cut granodiorites). The monazite data from the leucogranite sills and dikes do not record magmatic or hydrothermal activity after ~29 Ma, in contrast to the titanite record of hydrothermal activity to as late as ~23 Ma in the border zone of the Alta stock and its endoskarns (Stearns et al., 2020). This absence suggests that once magma injection and associated contact metamorphism in the hornfels ceased, permeability in the hornfels decreased sufficiently by ~29 Ma to prevent subsequent infiltration of significant fluxes of hydrothermal fluid into these hornfels lithologies in the aureole. 
    more » « less
  2. During International Ocean Discovery Program (IODP) Expedition 367/368/368X, Holes U1504A and U1504B were cored on the continental shelf (2817–2843 meters below sea level) in the northern South China Sea (SCS). A total of 106 m of metamorphic basement was penetrated that consists of greenish gray, deformed mylonitic, epidote-chlorite to calc-silicate schists containing granofels clasts ("greenschist"). Here we report bulk-rock major and trace element data from 17 greenschist samples, from which a subset of 9 samples was additionally analyzed for Pb-Nd-Hf isotope ratios. Fluid-mobile elements (U, Li, Rb, K, and Cs) behave somewhat erratically, yet tectonic discrimination and primitive mantle–normalized multielement diagrams reveal signatures that are typical for enriched intraplate basalts. These include a negative Pb anomaly (Ce/Pb = 34 ± 10), relative enrichments of Nb and Ta (Nb/La = 1.5 ± 0.3; Th/Nb = 0.07 ± 0.01), and a steep rare earth element pattern (La/Sm = 3.7 ± 0.7; Ho/Lu = 2.9 ± 0.2). The high values of the uranogenic 206Pb/204Pb (21.2–25.9) and 207Pb/204Pb (15.7–16.0) and their strong correlation point to a postformation "U addition event" that took place at 329 Ma ± 2 My (late Carboniferous). 143Nd/144Nd and 176Hf/177Hf data are consistent with the origin from an enriched Paleozoic age mantle source. In summary, our data suggest that the protolith of the Site U1504 metamorphic basement was an ocean-island basalt–type igneous rock that deformed during the late Paleozoic and was part of the prerift crustal basement of the SCS Basin. 
    more » « less
  3. Titanite has the ability to incorporate significant amounts of common Pb, which leads to uncertainty when applying the U-Pb decay series for geochronology. The isobaric interference of 204Hg on 204Pb poses an additional complexity in applying common Pb corrections. Here we investigate the removal of 204Hg interferences during titanite U-Pb dating using reaction cell gas chemistry via triple quadrupole mass spectrometry. U-Pb dates were determined for the natural titanite reference materials MKED-1 and BLR1 using an ESI NWR193UC excimer laser coupled to an Agilent 8900 ‘triple quad’ mass spectrometer. The 8900 is equipped with an octopole collision/reaction cell, which enables online interference removal. Two experiments were run, one in which we collected data in NoGas mode, and one in which NH3 was used as a reaction cell gas in MS/MS mode, in order to assess the feasibility of determining U/Pb ratios with mass shifted isotopes. In all experiments, a signal smoothing device was placed inline just before the ICP-MS interface, downstream from the addition of the Ar nebulizer gas to the He carrier gas stream. For the NoGas experiment, titanite was ablated using a 25 µm spot, with a beam energy density of 3 J/cm2, and a pulse rate of 4 Hz. In NoGas mode, signal intensities for the isotopes 201Hg, 202Hg, 204Pb, 206Pb, 207Pb, 232Th, 235U, and 238U were counted. In MS/MS mode, titanite was ablated using a 40 µm spot, with a beam energy density of 5 J/cm2, and a pulse rate of 4 Hz. A larger spot size in this experiment was used to counteract the decrease in signal intensity due to use of the reaction cell. In MS/MS mode, NH3 was flowed through the reaction cell in order to enable a charge transfer reaction between NH3 and Hg+, effectively neutralizing Hg. The isotopes 201Hg, 202Hg, 204Pb, 206Pb, and 207Pb were measured on-mass, as the isotopes of Pb are not affected by the NH3 gas. Uranium and Th both exhibit partial reaction with NH3 gas; therefore, the isotopes 232Th, 235U, and 238U were measured mass-shifted up 15 mass units, at masses 247, 250, and 253 respectively. Ratios of 207Pb/235U, 206Pb/238U, and 207Pb/206Pb were determined using the UPbGeochron4 DRS in Iolite (v.3.71) with MKED-1 as the primary reference material. Dates were calculated using IsoplotR by applying the Stacey-Kramers correction for common Pb. All isotopes of Hg were effectively neutralized by the NH3 charge transfer reaction in MS/MS mode; zero counts were detected for Hg isotopes. Dates for the BLR-1 titanite were 1050.55 ± 2.72 (2σ, n=12) Ma in NoGas mode, and 1048 ± 1.88 (2σ, n=15) Ma in MS/MS mode. These dates are in excellent agreement with the TIMS 206Pb/238U date for the BLR-1 titanite of 1047.1 ± 0.4 Ma. This method has the potential to enable measurement of 204Pb without needing to correct for Hg interferences. 
    more » « less
  4. Titanite and apatite can incorporate significant amounts of common Pb (204Pb) into their mineral structures, which leads to uncertainty when applying the U-Pb decay series for geochronology. The isobaric interference between 204Pb and 204Hg creates an additional complexity when calculating common lead corrections. Here we investigate the removal of 204Hg interferences during titanite U-Pb dating using reaction cell gas chemistry via triple quadrupole mass spectrometry compared with traditional methods that calculate U-Pb ages using a common lead correction. U-Pb dates for titanite natural reference materials MKED-1 and BLR-1 were determined using an ESI NWR193UC excimer laser coupled with an Agilent 8900 ‘triple quadrupole’ mass spectrometer. The 8900 is equipped with an octopole collision/reaction cell, which enables online interference removal. In order to compare traditional methods for U-Pb dating with interference removal methods, two experiments were run, one in which data was collected in NoGas mode, and one in which the 8900 was run in MS/MS mode, in order to assess the feasibility of determining U/Pb ratios with mass shifted isotopes. In MS/MS mode, NH3 was flowed through the reaction cell in order to enable a charge transfer reaction between NH3 and Hg+, effectively neutralizing Hg. During spot analyses in NoGas mode, masses 202Hg, 204Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, 235U, and 238U were monitored. For spot analyses in MS/MS mode, Th and U isotopes were measured on-mass at 232Th, 235U, 238U and mass-shifted to 247Th, 250U, and 253U. Pb isotopes were measured on-mass since Pb does not react with NH3. Ratios for 207Pb/235U, 206Pb/238U, and 207Pb/206Pb were calculated in Iolite (v.3.7.1) using the Geochron4 DRS using MKED-1 as the primary reference material and BLR-1 as a secondary reference material. Dates were calculated using IsoplotR. Weighted mean ages for titanite BLR-1 in MS/MS mode are 1043.8 ± 10.5 Ma (2σ, MSWD=1.08) for U isotopes measured on mass, and 1039.7 ± 8.3 Ma (2σ, MSWD=1.08) for mass-shifted U isotopes. These dates are both in agreement with the TIMS 206Pb/238U date for the BLR-1 titanite of 1047.1 ± 0.4 Ma. The use of NH3 for reaction cell chemistry has the potential to enable measurement of 204Pb without needing to correct for Hg interferences. 
    more » « less
  5. Abstract

    Most metasedimentary rocks in the southern Coast Mountains batholith are of uncertain tectonic affinity because they occur in discontinuous pendants surrounded by large intrusive bodies, and many protolith features are obscured by regional deformation and metamorphism. This study uses U-Th-Pb ages and Lu-Hf isotope signatures of detrital zircons in metasedimentary rocks in Bute, Loughborough, and Knight Inlets in an effort to test possible correlations with the adjacent Wrangellia, Alexander, Taku, Yukon-Tanana, and Stikine terranes. Detrital zircons from metasedimentary samples yield ages that belong to age groups of 590-528 Ma (peak age of 560 Ma), 485-432 Ma (peak age of 452 Ma), 356-286 Ma (peak age of 307 Ma), and 228-185 Ma (peak ages of 215 and 198 Ma). A small number of ~1.1-1.9 Ga grains are also present. εHft values of the 590-185 Ma grains yield a progression from intermediate (0 to +5) values to more juvenile (mostly +4 to +15) values from Neoproterozoic through early Mesozoic time. The Comparison of these results with similar data sets from adjacent terranes demonstrates that primary connections with the Yukon-Tanana and Taku terranes are unlikely but are consistent with primary connections with the Wrangellia, Stikine, and/or Alexander terranes. Unfortunately, the available constraints are not sufficient to eliminate any of these options or the possibility that the pendants are a unique tectonic fragment. Zircons from the metasedimentary samples also yield U-Th-Pb ages of 165-128 Ma (peak age of 152 Ma) and 114-88 Ma (peak age of 102 Ma). εHft values of these zircon domains are mostly juvenile (+7 to +13). Comparison of U concentrations, U/Th values, and CL textures of zircons from the metasedimentary samples, leucocratic sills that intrude the pendants, and surrounding plutonic bodies suggests that most of the young grains, as well as widespread younger rims on older grains, grew during metamorphism associated with emplacement of the adjacent plutonic bodies. Some young grains were derived from thin felsic sills or veins that were unintentionally included in the sampled material.

     
    more » « less