The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth.
more »
« less
Uncertainty and sensitivity analysis for spatial and spectral processing of Pb isotopes in zircon by atom probe tomography
Measuring 207Pb/206Pb ratios by atom probe tomography (APT) has provided new insight into the nanoscale behavior of trace components in zircon, and their relationship to time, temperature and structure. Here, we analyze three APT data sets for a 3.77 Ga zircon from the Beartooth Mountains, USA, and apply systematic ranging approaches to understand the spatial and spectral uncertainties inherent in 207Pb/206Pb analysis by APT. This zircon possesses two, 100% concordant U-Pb analyses by secondary ion mass spectrometry (SIMS), indicative of closed U-Pb systematics on the micron scale since crystallization. APT data sets contain sub-spherical Pb-rich (>0.25% atomic) domains with diameter <15 nm. Broadly consistent Pb-rich regions are defined in applying six different permutations of the two most common cluster identification algorithms. Measured 207Pb/206Pb ratios within Pb-rich domains vary between 0.794±0.15 (±2σ) and 0.715±0.052 depending on the ranging approach, cluster definition protocol and number of clusters interrogated. For the bulk APT data sets, 207Pb/206Pb = 0.353±0.18; this is indistinguishable from the bulk 207Pb/206Pb ratio by SIMS (0.367±0.0037), and statistically distinct from the 207Pb/206Pb ratio within clusters. Bulk and clustered 207Pb/206Pb ratios are consistent with Pb clustering at ~2.8 Ga, during protracted metamorphism and magmatism in the Beartooth Mountains. 10.1002/9781119227250.ch16
more »
« less
- Award ID(s):
- 1658823
- PAR ID:
- 10352132
- Editor(s):
- Moser, DE; Corfu, F; Darling, J; Reddy, SM; Tait, K
- Date Published:
- Journal Name:
- Geography monograph series
- ISSN:
- 1037-7158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth.more » « less
-
Abstract To evaluate the mechanisms driving nanoscale trace element mobility in radiation-damaged zircon, we analyzed two well-characterized Archean zircons from the Kaapvaal Craton (southern Africa): one zircon remained untreated and the other was experimentally heated in the laboratory at 1450 °C for 24 h. Atom probe tomography (APT) of the untreated zircon reveals homogeneously distributed trace elements. In contrast, APT of the experimentally heated zircon shows that Y, Mg, Al, and Pb+Yb segregate to a set of two morphologically and crystallographically distinct cluster populations that range from 5 nm tori to 25 nm toroidal polyhedra, which are confirmed to be dislocation loops by transmission electron microscopy (TEM). The dislocation loops lie in {100} and {001} planes; the edges are aligned with <100>, <101>, and <001>. The largest loops (up to 25 nm diameter) are located in {100} and characterized by high concentrations of Mg and Al, which are aligned with <001>. The 207Pb/206Pb measured from Pb atoms located within all of the loops (0.264 ± 0.025; 1σ) is consistent with present-day segregation and confirms that the dislocation loops formed during our experimental treatment. These experimentally induced loops are similar to clusters observed in zircon affected by natural geologic processes. We interpret that differences in cluster distribution, density, and composition between experimentally heated and geologically affected zircon are a function of the radiation dose, the pressure-temperature-time history, and the original composition of the zircon. These findings provide a framework for interpreting the significance of clustered trace elements and their isotopic characteristics in zircon. Our findings also suggest that the processes driving cluster formation in zircon can be replicated under laboratory conditions over human timescales, which may have practical implications for the mineralogical entrapment of significant nuclear elements.more » « less
-
Ascough, P.; Dunai, T.; King, G.; Lang, A.; Mezger, K. (Ed.)Detrital zircon geochronology by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely used tool for determining maximum depositional ages and sediment provenance, as well as reconstructing sediment routing pathways. Although the accuracy and precision of U–Pb geochronology measurements have improved over the past 2 decades, Pb loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb loss in zircon U–Pb geochronology but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that (i) CA does not systematically bias LA-ICP-MS U–Pb dates for 13 reference materials that span a wide variety of crystallization dates and U concentrations, (ii) CA-LA-ICP-MS U–Pb zircon geochronology can reduce or eliminate Pb loss in samples that have experienced significant radiation damage, and (iii) bulk CA prior to detrital zircon U–Pb geochronology by LA-ICP-MS improves the resolution of age populations defined by 206Pb/238U dates (Neoproterozoic and younger) and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates (Mesoproterozoic and older). The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations and increased confidence that 206Pb/238U dates are unaffected by Pb loss.more » « less
-
Two generations of dikes and sills (earlier granodiorite, later leucogranite) have intruded quartzofeldspathic to semi-pelitic hornfels in the innermost ~200 meters of the southern contact aureole of the Alta stock. Both zircon and monazite are present in the older granodiorite intrusions, and monazite alone is present in the younger leucogranite intrusions, and in biotite-rich reaction selvages formed by hydrothermal contact metamorphism in hornfels adjacent to these dikes and sills. U-Pb dates for zircon (n=532) range from ~38 to 32 Ma, with error on individual measurements of ±1–1.5 Ma, and define a KDE peak at 34.5 Ma. These zircon dates are slightly older than, but consistent with, existing zircon data from the Alta stock (35 to 32 Ma; Stearns et al., 2020), suggesting that the construction of the Alta stock began by emplacement of these granodiorite sills and dikes. Monazite Th-Pb dates (n = 888) range from ~41 to 28 Ma with error on individual measurements of ± 1–1.5 Ma. These dates are complicated by disturbances to the U/Th-Pb systematics by common Pb (Pbc) and excess 206Pb due to 230Th. Dates >38 Ma are disturbed by significant Pbc and do not represent crystallization ages. Dates from the granodiorites range from ~38–32 Ma. In individual samples of granodiorite where the disturbance from excess 206Pb can be rigorously evaluated, the monazite data sets yield concordant 232Th-208Pb and 207Pb/206Pb-corrected dates centered at ~35 Ma, consistent with zircon dates from these same samples. Monazite dates from the leucogranites are younger (<33 Ma), consistent with cross-cutting relationships (leucogranites cross-cut granodiorites). The monazite data from the leucogranite sills and dikes do not record magmatic or hydrothermal activity after ~29 Ma, in contrast to the titanite record of hydrothermal activity to as late as ~23 Ma in the border zone of the Alta stock and its endoskarns (Stearns et al., 2020). This absence suggests that once magma injection and associated contact metamorphism in the hornfels ceased, permeability in the hornfels decreased sufficiently by ~29 Ma to prevent subsequent infiltration of significant fluxes of hydrothermal fluid into these hornfels lithologies in the aureole.more » « less
An official website of the United States government

