skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interspecific pollen transport between non-native fennel and an island endemic buckwheat: assessment of the magnet effect
Non-native plant species can disrupt plant–pollinator interactions by altering pollinator foraging behavior, which can in turn affect levels of interspecific pollen transfer between native and nonnative plant species. These processes may be amplified in cases where introduced plant species act as magnet taxa that enhance pollinator visitation to other plant species. We investigated these interactions on Santa Cruz Island (Santa Barbara Co., California) between non-native fennel (Foeniculum vulgare), a widespread and abundant invader, and the endemic Santa Cruz Island buckwheat (Eriogonum arborescens), which broadly overlaps fennel in its local distribution and blooming phenology. A fennel flower removal experiment revealed that this invader acts as a magnet species by increasing insect visitation to adjacent buckwheat flowers. Analysis of the amount of pollen carried on the bodies of insect pollinators (i.e., pollen transport) revealed that 96% of visitors to buckwheat flowers carried fennel pollen and 72% of visitors to fennel flowers carried buckwheat pollen. Pollen transport analyses and visitation rate data further suggest that members of three bee genera (primarily Augochlorella) may be responsible for the majority of fennel pollen deposited on the stigmas of buckwheat flowers (i.e., pollen transfer) and vice versa. Lastly, fennel pollen transport appeared to occur at a larger spatial scale than the magnet effect that fennel plants exert on floral visitors to neighboring buckwheat plants. The ability of fennel to act as a magnet species, coupled with the fact that it is widespread invader with known allelopathic capacities, suggests that future studies could evaluate if the transfer of fennel pollen adversely affects native plant reproduction in areas where fennel is introduced.  more » « less
Award ID(s):
1654525
PAR ID:
10352139
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biological invasions
Volume:
24
ISSN:
1573-1464
Page Range / eLocation ID:
139-155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities. 
    more » « less
  2. Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants. 
    more » « less
  3. Abstract Despite the importance of insect pollination to produce marketable fruits, insect pollination management is limited by insufficient knowledge about key crop pollinator species. This lack of knowledge is due in part to (1) the extensive labour involved in collecting direct observations of pollen transport, (2) the variability of insect assemblages over space and time and (3) the possibility that pollinators may need access to wild plants as well as crop floral resources.We address these problems using strawberry in the United Kingdom as a case study. First, we compare two proxies for estimating pollinator importance: flower visits and pollen transport. Pollen‐transport data might provide a closer approximation of pollination service, but visitation data are less time‐consuming to collect. Second, we identify insectparametersthat are associated with high importance as pollinators, estimated using each of the proxies above. Third, we estimated insects' use of wild plants as well as the strawberry crop.Overall, pollinator importances estimated based on easier‐to‐collect visitation data were strongly correlated with importances estimated based on pollen loads. Both frameworks suggest that bees (ApisandBombus) and hoverflies (Eristalis) are likely to be key pollinators of strawberries, although visitation data underestimate the importance of bees.Moving beyond species identities, abundant, relatively specialised insects with long active periods are likely to provide more pollination services.Most insects visiting strawberry plants also carried pollen from wild plants, suggesting that pollinators need diverse floral resources.Identifying essential pollinators or pollinator parameters based on visitation data will reach the same general conclusions as those using pollen transport data, at least in monoculture crop systems. Managers may be able to enhance pollination service by preserving habitats surrounding crop fields to complement pollinators' diets and provide habitats for diverse life stages of wild pollinators. 
    more » « less
  4. Using the pollen loads carried by floral visitors to infer their floral visitation behavior is a powerful technique to explore the foraging of wild pollinators. Interpreting these pollen records, however, requires assumptions about the underlying pollen dynamics. To compare visitor foraging across flower species, the most important assumption is that pollen is picked up and retained on the visitor at similar rates. Given differences in pollen presentation traits such as grain number or stickiness even among flowers with similar morphologies, however, the generality of this assumption is unclear. We investigated pollen accumulation on the hawkmoth Manduca sexta, testing the degree to which accumulation differed among flower species and how pollen stickiness affected this accumulation. In no-choice floral visitation assays to six plant species visited by long-tongued hawkmoths in the wild, M. sexta individuals were allowed to visit flowers 1, 2, or 5 times, after which the pollen on their proboscises was removed and counted.  We found that the six plant species varied orders of magnitude in the number of pollen grains deposited on the moths, with some placing thousands of grains after a single visit and other placing none after five. Plant species with sticky pollen adhesion mechanisms placed more pollen on the moths and had relatively less pollen accumulation over successive visits than non-sticky plants. Intriguingly, moths carried fewer pollen grains after 5 visits than after 2 visits, suggesting that both sticky and non-sticky pollen was lost during foraging. Together, our results suggest that interpretation of pollen load data should be made cautiously, especially when comparing across plant species. 
    more » « less
  5. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less