skip to main content


Title: Design Decisions in Translating Face-to-Face Video-Based Elementary Science Professional Development to an Online Environment
Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice PD model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice, and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al., 2017: Roth et al., 2018). The face-to-face PD model is expensive and difficult to scale. In this poster, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and practices in the context in which they will be teaching. In addition, there are scaffolded opportunities for teachers to learn from model videos by experienced teachers, try model units, and ultimately develop their own unit, with guidance. The PD model also attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Roth et al., 2018. Methods We followed a design-based research approach (DBR: Cobb et al., 2003: Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005). Data We iteratively designed, tested, and revised 17 modules across three pilot versions. Three small groups of teachers engaged in both synchronous and asynchronous components of the larger online course. They responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of COVID-19, online PD has taken on new urgency. AERA members will gain insight into the construction of an online PD for elementary science teachers/ Full digital poster available at: https://aera21-aera.ipostersessions.com/default.aspx?s=64-5F-86-2E-15-F8-C3-C0-45-C6-A0-B7-1D-90-BE-46  more » « less
Award ID(s):
1813127
NSF-PAR ID:
10352166
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less
  2. Video-based analysis of practice models have gained prominence in mathematics and science teacher education inservice professional learning. There is a growing body of evidence that these intensive professional learning (PL) models lead to positive impacts on teacher knowledge, classroom instructional practice, and student learning (Roth et al., 2018; Taylor et al., 2017), but they are expensive and difficult to sustain. An online version would have several benefits, allowing for greater reach to teachers and students across the country, but if online models were substantially less effective, then lower impacts would undercut the benefits of greater accessibility. We designed and studied a fully online version of the face-to-face Science Teachers Learning from Lesson Analysis (STeLLA) PL model (Roth, et al., 2011; Roth et al., 2018; Taylor et al., 2017). We conducted a quasi-experimental study comparing online STeLLA to face-to-face STeLLA. Although we found no significant difference in elementary student learning between the online and face-to-face versions ( p = .09), the effect size raises questions. Exploratory analyses suggest that the impact of online STeLLA on students is greater than the impact of a similar number of hours of traditional, face-to-face content deepening PL, but less than the impact of the full face-to-face STeLLA program. Differences in student populations, with higher percentages of students from racial and ethnic groups underserved by schools in the online STeLLA program, along with testing of the online STeLLA model during the pandemic, complicates interpretation of the findings. 
    more » « less
  3. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less
  4. Computer science (CS) education is plagued by a gender divide, with few girls and women participating in this high-status discipline. A proven strategy to broaden participation for girls and other underrepresented students interested in CS is the availability of teacher preparation that requires classroom teachers to grow their knowledge of CS content as well as the pedagogical practices that enhance inclusive learning opportunities for historically underrepresented students. This case study describes the design and impact of an Online Professional Development (PD) for CS teachers, a year-long PD program aimed at broadening participation in the United States. Using survey and observation data from more than 200 participants over three years in PD settings, this paper examines how the design of an online learning community model of PD provides an inclusive venue for teachers to examine their belief systems, develop inclusive pedagogical practices, and collectively transform the culture of CS classrooms to places that support all learners. Findings suggest that purposeful facilitation creates a transformative culture of “shared experience” whereby facilitators and groups of teachers engage in collaborative lesson planning and debriefing discussions, in both synchronous and asynchronous sessions. This case study can inform other online PD efforts aimed at broadening participation in computing. 
    more » « less
  5. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in. 
    more » « less