Spatial perspective taking is an essential cognitive ability that enables people to imagine how an object or scene would appear from a perspective different from their current physical viewpoint. This process is fundamental for successful navigation, especially when people utilize navigational aids (e.g., maps) and the information provided is shown from a different perspective. Research on spatial perspective taking is primarily conducted using paper-pencil tasks or computerized figural tasks. However, in daily life, navigation takes place in a three-dimensional (3D) space and involves movement of human bodies through space, and people need to map the perspective indicated by a 2D, top down, external representation to their current 3D surroundings to guide their movements to goal locations. In this study, we developed an immersive viewpoint transformation task (iVTT) using ambulatory virtual reality (VR) technology. In the iVTT, people physically walked to a goal location in a virtual environment, using a first-person perspective, after viewing a map of the same environment from a top-down perspective. Comparing this task with a computerized version of a popular paper-and-pencil perspective taking task (SOT: Spatial Orientation Task), the results indicated that the SOT is highly correlated with angle production error but not distance error in the iVTT. Overall angular error in the iVTT was higher than in the SOT. People utilized intrinsic body axes (front/back axis or left/right axis) similarly in the SOT and the iVTT, although there were some minor differences. These results suggest that the SOT and the iVTT capture common variance and cognitive processes, but are also subject to unique sources of error caused by different cognitive processes. The iVTT provides a new immersive VR paradigm to study perspective taking ability in a space encompassing human bodies, and advances our understanding of perspective taking in the real world.
more »
« less
Measuring Spatial Perspective Taking: Analysis of Four Measures Using Item Response Theory
Research on spatial thinking requires reliable and valid measures of individual differences in various component skills. Spatial perspective taking (PT)-the ability to represent viewpoints different from one's own-is one kind of spatial skill that is especially relevant to navigation. This study had two goals. First, the psychometric properties of four PT tests were examined: Four Mountains Task (FMT), Spatial Orientation Task (SOT), Perspective-Taking Task for Adults (PTT-A), and Photographic Perspective-Taking Task (PPTT). Using item response theory (IRT), item difficulty, discriminability, and efficiency of item information functions were evaluated. Second, the relation of PT scores to general intelligence, working memory, and mental rotation (MR) was assessed. All tasks showed good construct validity except for FMT. PPTT tapped a wide range of PT ability, with maximum measurement precision at average ability. PTT-A captured a lower range of ability. Although SOT contributed less measurement information than other tasks, it did well across a wide range of PT ability. After controlling for general intelligence and working memory, original and IRT-refined versions of PT tasks were each related to MR. PTT-A and PPTT showed relatively more divergent validity from MR than SOT. Tests of dimensionality indicated that PT tasks share one common PT dimension, with secondary task-specific factors also impacting the measurement of individual differences in performance. Advantages and disadvantages of a hybrid PT test that includes a combination of items across tasks are discussed.
more »
« less
- Award ID(s):
- 1660996
- PAR ID:
- 10352197
- Date Published:
- Journal Name:
- Topics in Cognitive Science
- ISSN:
- 1756-8757
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The lateralized ERP N2pc component has been shown to be an effective marker of attentional object selection when elicited in a visual search task, specifically reflecting the selection of a target item among distractors. Moreover, when targets are known in advance, the visual search process is guided by representations of target features held in working memory at the time of search, thus guiding attention to objects with target-matching features. Previous studies have shown that manipulating working memory availability via concurrent tasks or within task manipulations influences visual search performance and the N2pc. Other studies have indicated that visual (non-spatial) vs. spatial working memory manipulations have differential contributions to visual search. To investigate this the current study assesses participants' visual and spatial working memory ability independent of the visual search task to determine whether such individual differences in working memory affect task performance and the N2pc. Participants ( n = 205) completed a visual search task to elicit the N2pc and separate visual working memory (VWM) and spatial working memory (SPWM) assessments. Greater SPWM, but not VWM, ability is correlated with and predicts higher visual search accuracy and greater N2pc amplitudes. Neither VWM nor SPWM was related to N2pc latency. These results provide additional support to prior behavioral and neural visual search findings that spatial WM availability, whether as an ability of the participant's processing system or based on task demands, plays an important role in efficient visual search.more » « less
-
Item response theory (IRT) has become one of the most popular statistical models for psychometrics, a field of study concerned with the theory and techniques of psychological measurement. The IRT models are latent factor models tailored to the analysis, interpretation, and prediction of individuals’ behaviors in answering a set of measurement items that typically involve categorical response data. Many important questions of measurement are directly or indirectly answered through the use of IRT models, including scoring individuals’ test performances, validating a test scale, linking two tests, among others. This paper provides a review of item response theory, including its statistical framework and psychometric applications. We establish connections between item response theory and related topics in statistics, including empirical Bayes, nonparametric methods, matrix completion, regularized estimation, and sequential analysis. Possible future directions of IRT are discussed from the perspective of statistical learning.more » « less
-
Abstract Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single‐neuron activity from human participants as they completed a paired‐task session consisting of a passive‐viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired‐task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept‐related activations in the working memory task, as well as target‐location and serial‐position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts.more » « less
-
Abstract We examined the relationship between metaphor comprehension and verbal analogical reasoning in young adults who were either typically developing (TD) or diagnosed with Autism Spectrum Disorder (ASD). The ASD sample was highly educated and high in verbal ability, and closely matched to a subset of TD participants on age, gender, educational background, and verbal ability. Additional TD participants with a broader range of abilities were also tested. Each participant solved sets of verbal analogies and metaphors in verification formats, allowing measurement of both accuracy and reaction times. Measures of individual differences in vocabulary, verbal working memory, and autistic traits were also obtained. Accuracy for both the verbal analogy and the metaphor task was very similar across the ASD and matched TD groups. However, reaction times on both tasks were longer for the ASD group. Additionally, stronger correlations between verbal analogical reasoning and working memory capacity in the ASD group indicated that processing verbal analogies was more effortful for them. In the case of both groups, accuracy on the metaphor and analogy tasks was correlated. A mediation analysis revealed that after controlling for working memory capacity, the inter‐task correlation could be accounted for by the mediating variable of vocabulary knowledge, suggesting that the primary common mechanisms linking the two tasks involve language skills.more » « less
An official website of the United States government

