The Arctic is warming at twice the rate of the global mean. This warming could further stimulate methane (CH4) emissions from northern wetlands and enhance the greenhouse impact of this region. Arctic wetlands are extremely heterogeneous in terms of geochemistry, vegetation, microtopography, and hydrology, and therefore CH4fluxes can differ dramatically within the metre scale. Eddy covariance (EC) is one of the most useful methods for estimating CH4fluxes in remote areas over long periods of time. However, when the areas sampled by these EC towers (i.e. tower footprints) are by definition very heterogeneous, due to encompassing a variety of environmental conditions and vegetation types, modelling environmental controls of CH4emissions becomes even more challenging, confounding efforts to reduce uncertainty in baseline CH4emissions from these landscapes. In this study, we evaluated the effect of footprint variability on CH4fluxes from two EC towers located in wetlands on the North Slope of Alaska. The local domain of each of these sites contains well developed polygonal tundra as well as a drained thermokarst lake basin. We found that the spatiotemporal variability of the footprint, has a significant influence on the observed CH4fluxes, contributing between 3% and 33% of the variance, depending on site, time period, and modelling method. Multiple indices were used to define spatial heterogeneity, and their explanatory power varied depending on site and season. Overall, the normalised difference water index had the most consistent explanatory power on CH4fluxes, though generally only when used in concert with at least one other spatial index. The spatial bias (defined here as the difference between the mean for the 0.36 km2domain around the tower and the footprint-weighted mean) was between ∣51∣% and ∣18∣% depending on the index. This study highlights the need for footprint modelling to infer the representativeness of the carbon fluxes measured by EC towers in these highly heterogeneous tundra ecosystems, and the need to evaluate spatial variability when upscaling EC site-level data to a larger domain.
- Award ID(s):
- 1931333
- NSF-PAR ID:
- 10352231
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 559 to 583
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH 4 ) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH 4 flux measurements globally, initial results comparing CH 4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH 4 fluxes across sites ranged from −0.2 ± 0.02 g C m –2 yr –1 for an upland forest site to 114.9 ± 13.4 g C m –2 yr –1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m –2 yr –1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH 4 flux across wetland sites globally. Water table position was positively correlated with annual CH 4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH 4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH 4 estimates due to gap-filling and random errors were on average ±1.6 g C m –2 yr –1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH 4 flux database, the controls on ecosystem CH 4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH 4 emissions.more » « less
-
Abstract The eddy covariance (EC) method is one of the most widely used approaches to quantify surface‐atmosphere fluxes. However, scaling up from a single EC tower to the landscape remains an open challenge. To address this, we used 63 site years of data to examine simulated annual and growing season sums of carbon fluxes from three paired land‐cover type sites of corn, restored‐prairie, and switchgrass ecosystems. This was also done across the landscape by modeling fluxes using different land‐cover type input data. An artificial neural network (ANN) approach was used to model net ecosystem exchange (NEE), ecosystem respiration (
R eco), and gross primary production (GPP) at one paired site using environmental observations from the second site only. With a mean spatial separation of 11 km between paired sites, we were able to model annual sums of NEE,R eco, and GPP with uncertainties of 20%, 22%, and 8%, respectively, relative to observation sums. When considering the growing season only, model uncertainties were 17%, 22%, and 9%, respectively for the three flux terms. We also show that ANN models can estimate sums ofR ecoand GPP fluxes without needing the constraint of similar land‐cover‐type, with annual uncertainties of 12% and 10%. These results provide new insights to scaling up observations from one EC site beyond the footprint of the EC tower to multiple land‐cover types across the landscape. -
Abstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2and CH4fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐Microbe, to examine the microtopographic impacts on CO2and CH4fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low‐centered polygon (LCP) center, LCP transition, LCP rim, high‐centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM‐Microbe model against static‐chamber measured CO2and CH4fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low‐elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4emissions rates with greater seasonal variations than high‐elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area‐weighted approach before validation against EC‐measured CH4fluxes. The model underestimated the EC‐measured CH4flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4flux. The strong microtopographic impacts on CO2and CH4fluxes call for a model‐data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.
-
Abstract. Long-term tall-tower eddy-covariance (EC) measurements have been recently established in three European pilot cities as part of the ICOS-Cities project. We conducted a comparison of EC software to ensure a reliable generation of interoperable flux estimates, which is the prerequisite for avoiding methodological biases and improving the comparability of the results. We analyzed datasets covering 5 months collected from EC tall-tower installations located in urbanized areas of Munich, Zurich, and Paris. Fluxes of sensible heat, latent heat, and CO2 were calculated using three software packages (i.e., TK3, EddyPro, and eddy4R) to assess the uncertainty of flux estimations attributed to differences in implemented postprocessing schemes. A very good agreement on the mean values and standard deviations was found across all three sites, which can probably be attributed to a uniform instrumentation, data acquisition, and preprocessing. The overall comparison of final flux time series products showed a good but not yet perfect agreement among the three software packages. TK3 and EddyPro both calculated fluxes with low-frequency spectral correction, resulting in better agreement than between TK3 and the eddy4R workflow with disabled low-frequency spectral treatment. These observed flux discrepancies indicate the crucial role of treating low-frequency spectral loss in flux estimation for tall-tower EC systems.